Copyright 2016 Crista Moreno. Algebra Lecture 9 is made available under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

Algebra Lecture 9

Crista Moreno

December 18, 2016

Topics

TodaySystems of Linear Equations

What is a System of Linear Equations?

It is a set of Linear Equations.

A Set of *n* Linear Equations

$$\begin{cases} y_1 = m_1 x + b_1 \\ y_2 = m_2 x + b_2 \\ \vdots \\ y_n = m_n x + b_n \end{cases}$$

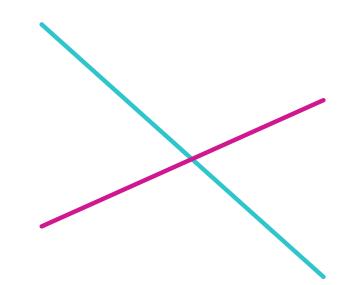
Here, we will consider sets of two linear equations.

$$\begin{cases} y_1 = m_1 x + b_1 \\ y_2 = m_2 x + b_2 \end{cases}$$

A System of Linear Equations is said to be:

A System of Linear Equations is said to be: Independent if it has exactly one solution A System of Linear Equations is said to be: Independent if it has exactly one solution (dependent otherwise). A System of Linear Equations is said to be: Independent if it has exactly one solution (dependent otherwise).

Consistent if it has at least one solution


A System of Linear Equations is said to be: Independent if it has exactly one solution (dependent otherwise).

Consistent if it has at least one solution

(inconsistent otherwise).

Recall the possible ways in which two lines can be drawn in the plane \mathbb{R}^2 .

Independent & Consistent

Inconsistent & Independent

Dependent & Consistent

A solution to a system of linear equations is a set of points that satisfy all linear equations in the system. As with solutions for a single linear equation, there are only three possibilities for the solutions to a System of two Linear Equations.

• There is **One** solution.

• There is **One** solution.

• There are **Zero** solutions.

- There is **One** solution.
- There are **Zero** solutions.
- There are Infinitely many solutions.

Examples

Consider the following linear system

٢

Consider the following linear system

٢

Is the point (5,1) a solution of the

linear system ♣?

-6x + 7y = 29

-6x + 7y = 29 $-6(5) + 7(1) \stackrel{?}{=} 29$

-6x + 7y = 29-6(5) + 7(1) $\stackrel{?}{=} 29$ -30 + 7 $\stackrel{?}{=} 29$

-6x + 7y = 29 $-6(5) + 7(1) \stackrel{?}{=} 29$ $-30 + 7 \stackrel{?}{=} 29$ $-23 \stackrel{?}{=} 29$

-6x + 7y = 29 $-6(5) + 7(1) \stackrel{?}{=} 29$ $-30 + 7 \stackrel{?}{=} 29$ $-23 \stackrel{?}{=} 29$ NO

The point (5, 1) is not a solution to the linear system **+** because it fails to satisfy both equations.

Consider the following linear system

٢

$$\heartsuit = \begin{cases} x - y = 4\\ 2x - 2y = 4 \end{cases}$$

Consider the following linear system

1

$$\heartsuit = \begin{cases} x - y = 4\\ 2x - 2y = 4 \end{cases}$$

How many solutions are there for the

linear system \heartsuit ?

Solve for the Solutions Algebraically

$$-2(x - y) = -2(4)$$

 $2x - 2y = 4$

Solve for the Solutions Algebraically

-2x + 2y = -82x - 2y = 40 = -4

Solve for the Solutions Algebraically

-2x + 2y = -82x - 2y = 40 = -4

Not Possible!

Solve for the Solutions Algebraically

-2x + 2y = -82x - 2y = 40 = -4

Not Possible! There are **no solutions** for the linear system \heartsuit .

Solve for the Solutions Algebraically

-2x + 2y = -82x - 2y = 40 = -4

Not Possible! There are **no**

solutions for the linear system \heartsuit .

 \emptyset denotes the empty set {}.

The linear system \heartsuit is inconsistent.

$$\heartsuit = \begin{cases} x - y = 4\\ 2x - 2y = 4 \end{cases}$$

Consider the following linear system

$$\blacklozenge = \begin{cases} 2x + 4y = 2\\ -x - 2y = -1 \end{cases}$$

Consider the following linear system

$$\blacklozenge = \begin{cases} 2x + 4y = 2\\ -x - 2y = -1 \end{cases}$$

How many solutions are there for the

linear system ♦?

Solve for the Solutions Algebraically

2x + 4y = 22(-x - 2y) = 2(-1) Solve for the Solutions Algebraically

2x + 4y = 2 $\frac{-2x - 4y = -2}{0 = 0}$

This is always true!

There are infinitely many solutions to

the linear system \blacklozenge .

-

$$\blacklozenge = \begin{cases} 2x + 4y = 2\\ -x - 2y = -1 \end{cases}$$

The solutions are $\{(x, y) | -x - 2y = -1\}$.

The linear system \blacklozenge is consistent and dependent.

$$\blacklozenge = \begin{cases} 2x + 4y = 2\\ -x - 2y = -1 \end{cases}$$

The solutions are $\{(x, y) | -x - 2y = -1\}$.

-

Solve the following linear system

$$\Phi = \begin{cases} \frac{1}{2}x - \frac{1}{3}y = \frac{5}{6} \\ \frac{1}{5}x - \frac{1}{4}y = \frac{15}{10} \end{cases}$$

Word Problems

The **perimeter** of a rectangle is 42 feet. The length is seven feet more than the width. Find the **dimensions** of the rectangle.

The **perimeter** of a rectangle is 42 feet.

The **perimeter** of a rectangle is 42 feet. The length is seven feet more than the width.

The **perimeter** of a rectangle is 42 feet. The length is seven feet more than the width. Find the **dimensions** of the rectangle.

System of Linear Equations for Perimeter and Length

System of Linear Equations for Perimeter and Length

 $\begin{cases} 2L + 2W = 42 \end{cases}$

System of Linear Equations for Perimeter and Length

 $\begin{cases} 2L + 2W = 42\\ L = W + 7 \end{cases}$

2(W + 7) + 2W = 42

2(W + 7) + 2W = 422W + 14 + 2W = 42

2(W + 7) + 2W = 422W + 14 + 2W = 424W = 28

2(W + 7) + 2W = 422W + 14 + 2W = 424W = 28

W = 7

2(W + 7) + 2W = 422W + 14 + 2W = 424W = 28 $W = 7 \rightarrow L = 7 + 7 = 14$

The **sum** of two numbers is 13, and their difference is 5. Find the numbers.

The **sum** of two numbers is 13,

The **sum** of two numbers is 13, and their difference is 5.

The **sum** of two numbers is 13, and their difference is 5. Find the numbers.

System of Linear Equations for Sum and Difference

System of Linear Equations for Sum and Difference

 $\begin{cases} x + y = 13 \end{cases}$

System of Linear Equations for Sum and Difference

 $\begin{cases} x + y = 13 \\ x - y = 5 \end{cases}$

Next Time Systems of Linear Inequalities

Copyright 2016 Crista Moreno. Algebra Lecture 9 is made available under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

