Copyright 2016 Crista Moreno. Algebra Lecture 8 is made available under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

Algebra Lecture 8

Crista Moreno

December 18, 2016

Topics for today

• Solving Linear Inequalities

${f \circ}$ Inequalities on the Real Number Line ${\Bbb R}^1$

What is a Linear Inequality?

It is an inequality involving lines.

What are the possible things that can happen with two lines in the plane \mathbb{R}^2 ?

One Possibility

One Possibility

One Possibility

Another Possibility

Another Possibility

Yet Another Possibility

Examples

Solve the following linear inequality $\frac{3}{2}x - \frac{1}{2} \le 1 - x$

$\frac{3}{2}x - \frac{1}{2} \le 1 - x$

 $\frac{3}{2}x - \frac{1}{2} \le 1 - x$ $3x - 1 \le 2 - 2x$

 $\frac{3}{2}x - \frac{1}{2} \le 1 - x$ $3x - 1 \le 2 - 2x$

 $3x + 2x - 1 \le 2$

 $\frac{3}{2}x - \frac{1}{2} \le 1 - x$ $3x - 1 \le 2 - 2x$

$3x + 2x - 1 \le 2$

 $5x \leq 3$

 $\frac{3}{2}x - \frac{1}{2} \le 1 - x$ $3x - 1 \le 2 - 2x$

$3x + 2x - 1 \le 2$

y = 3/2x - 1/2 y = 1 - x

y = 3/2x - 1/2 y = 1 - x

Solve the following linear inequality

 $-2x + 1 \ge x$

 $-2x + 1 \ge x$

 $-2x + 1 \ge x$

 $1 \ge x + 2x$

 $-2x + 1 \ge x$

$1 \ge x + 2x$

 $1 \ge 3x$

 $-2x + 1 \ge x$

$1 \ge x + 2x$

 $1 \ge 3x$

Solve the following linear inequality

$$\frac{4}{3}x - \frac{2}{3} \le -1$$

 $\frac{4}{3}x - \frac{2}{3} \le -1$

 $\frac{4}{3}x - \frac{2}{3} \le -1$ $4x - 2 \leq -3$

 $\frac{4}{3}x - \frac{2}{3} \le -1$ $4x - 2 \leq -3$

 $4x \leq -1$

 $\frac{4}{3}x - \frac{2}{3} \le -1$ $4x - 2 \leq -3$

$$4x \leq -1$$

$$x \le \frac{-1}{4}$$

y = 4/3x - 2/3 y = -1

Solve the following linear inequality

$$\frac{-2}{3} \ge 4 - 3x$$

 $\frac{-2}{3} \ge 4 - 3x$

 $\frac{-2}{3} \ge 4 - 3x$ $-2 \ge 12 - 9x$
$\frac{-2}{3} \ge 4 - 3x$ $-2 \ge 12 - 9x$

 $-14 \ge -9x$

 $\frac{-2}{3} \ge 4 - 3x$ $-2 \ge 12 - 9x$

 $-14 \ge -9x$

 $\frac{14}{9} \le x$

y = -2/3 y = 4 - 3x

Solve the following linear inequality $\frac{-3}{4}(2x-1) \le \frac{1}{2}(5x-3) + 1$

Solve the following linear inequality

$$\frac{5-2x}{2} > \frac{2x+1}{4}$$

Inequalities on the Real Number Line $$\mathbbmm{R}^1$$

Symbols

() <,> exclude endpoints [] \leq , \geq include endpoints

or means union ${\boldsymbol{\cup}}$

and means intersection \cap

Examples

$x \ge 2 \qquad [2,\infty)$

$x \ge 2 \qquad [2,\infty)$

$x \ge 2 \qquad [2,\infty)$

$x < 1 \qquad (-\infty, 1)$

$x < 1 \qquad (-\infty, 1)$

$x < 1 \qquad (-\infty, 1)$

$-2 \le x < 4$ [-2,4]

 $\begin{array}{c} x = -2 \\ -3 - 2 - 1 & 0 \\ 1 & 2 & 3 \end{array} \xrightarrow{x = 4} \\ \bigcirc x - axis \\ \hline x - x - x - x \\ \hline x - x \\ \hline x - x \\ \hline x - x \\ x - x$

Graph the Following Inequality

$2x \ge -10$ and $x + 1 \le 5$

Graph the Following Inequality

$2x \ge -10$ and $x + 1 \le 5$ $x \ge -5$ and $x + 1 \le 5$

Graph the Following Inequality

$2x \ge -10$ and $x + 1 \le 5$ $x \ge -5$ and $x + 1 \le 5$

$x \ge -5$ and $x \le 4$

Word Problems

Given a rectangle whose **length** is **three feet more** than the **width**. Find the values for the width such that the perimeter of the rectangle is less than 86 feet.

Given a rectangle whose length is 5x feet and width is x + 4 feet, find the values for xfor which the perimeter of the rectangle would range from 50 to 80 feet.

$50 \le 2(x+4) + 2(5x) \le 80$

$50 \le 2(x+4) + 2(5x) \le 80$ $50 \le 2x + 8 + 10x \le 80$

$50 \le 2(x + 4) + 2(5x) \le 80$ $50 \le 2x + 8 + 10x \le 80$ $50 \le 12x + 8 \le 80$

$50 \le 2(x+4) + 2(5x) \le 80$ 50 < 2x + 8 + 10x < 80 $50 \le 12x + 8 \le 80$ 42 < 12x < 72

$50 \le 2(x+4) + 2(5x) \le 80$ 50 < 2x + 8 + 10x < 8050 < 12x + 8 < 8042 < 12x < 72 $\frac{42}{12} \le x \le 6$

$50 \le 2(x+4) + 2(5x) \le 80$ 50 < 2x + 8 + 10x < 8050 < 12x + 8 < 8042 < 12x < 72 $\frac{42}{12} \le x \le 6$ $3.5 \le x \le 6$

Next Time

Systems of Linear Equations

Copyright 2016 Crista Moreno. Algebra Lecture 8 is made available under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

