Copyright 2016 Crista Moreno. Algebra Lecture 3 is made available under the Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/.

Algebra Lecture 3

Crista Moreno

December 20, 2016

Warm Up

Warm Up Problems

- Find the area of a square if a side has length ♥.
- Find the volume of a cube is an edge has length 3♠♦.

Warm Up

Warm Up Problems

• Find the area of a square if a side has length \heartsuit . Solution: ${\heartsuit}^2$

• Find the volume of a cube is an edge has length 3♠♦.

Solution:
$$(3 \spadesuit \diamondsuit)^3 = 27 \spadesuit^3 \diamondsuit^3$$

Exponents

Exponentiation

$$a^n = \overbrace{a * a * \cdots * a}^n$$

Exponents

Properties of Exponents

$$a^{0} \equiv 1$$

$$a^{n}a^{m} = a^{n+m} \qquad a^{n}$$

$$a^{-1} \equiv \frac{1}{a} \qquad a^{-1}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}} \qquad \left(\frac{a}{b}\right)^{n}$$

$$a^{n}a^{-m} = a^{n+-m}$$

$$a^{-n} = \frac{1}{a^{n}}$$

$$\left(\frac{a}{b}\right)^{-n} = \frac{b^{n}}{a^{n}}$$

Properties of a^n

 $a^n a^m = a^{n+m}$

Properties of a^n

$$a^n a^m = a^{n+m}$$

Why?

Properties of \underline{a}^{n}

$$a^n a^m = a^{n+m}$$

$$a^n * a^m = \overbrace{a * a * \cdots * a}^n * \overbrace{a * a * \cdots * a}^m = a^{n+m}$$

Properties of a^n

$$a^n a^m = a^{n+m}$$

$$a^n * a^m = \overbrace{a * a * \cdots * a}^n * \overbrace{a * a * \cdots * a}^m = a^{n+m}$$

$$3^23^3 = 3 \times 3 \times 3 \times 3 \times 3 = 3^5 = 3^{2+3}$$

Examples

Example

 α -alpha

Properties of $\left(\frac{a}{b}\right)^n$

$$\left(\frac{a}{b}\right)^n = \frac{a'}{b'}$$

Properties of $\left(\frac{a}{b}\right)^n$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Why?

Properties of $\left(\frac{a}{b}\right)^n$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\left(\frac{a}{b}\right)^n = \overline{\left(\frac{a}{b}\right) * \cdots * \left(\frac{a}{b}\right)} = \underline{\underbrace{\frac{a * \cdots * a}{b * \cdots * b}}_{p}} = \underline{\frac{a^n}{b^n}}$$

Properties of
$$\left(\frac{a}{b}\right)^n$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\left(\frac{a}{b}\right)^n = \overline{\left(\frac{a}{b}\right) * \cdots * \left(\frac{a}{b}\right)} = \underbrace{\frac{\overbrace{a * \cdots * a}^n}{b * \cdots * b}}_{n} = \underbrace{\frac{a^n}{b^n}}_{n}$$

$$\left(\frac{3}{4}\right)^2 = \left(\frac{3}{4}\right) * \left(\frac{3}{4}\right) = \frac{3 * 3}{4 * 4} = \boxed{\frac{3^2}{4^2}}$$

Definition a^{-n}

$$a^{-n} \equiv \frac{1}{a^n}$$
 & $a^m a^{-n} = a^{m+(-n)}$

Definition a^{-n}

$$a^{-n} \equiv \frac{1}{a^n}$$
 & $a^m a^{-n} = a^{m+(-n)}$

Why?

Definition \underline{a}^{-n}

$$a^{-n} \equiv \frac{1}{a^n}$$
 & $a^m a^{-n} = a^{m+(-n)}$

Why?
$$a^{m} * a^{-n} = \overbrace{a * a * \cdots * a}^{m} * \underbrace{\frac{1}{a * a * \cdots * a}}_{n}$$

Definition \underline{a}^{-n}

$$a^{-n} \equiv \frac{1}{a^n}$$
 & $a^m a^{-n} = a^{m+(-n)}$

$$a^{m} * a^{-n} = \underbrace{a * a * \cdots * a}_{n} * \underbrace{\frac{1}{a * a * \cdots * a}}_{n}$$

$$3^{2}3^{-4} = 3 \times 3 \times \frac{1}{3 \times 3 \times 3 \times 3} = \frac{1}{3 \times 3} = \frac{1}{3^{2}} = 3^{-2}$$

Examples

$$= \Psi \Phi^4 \frac{1}{\Phi^2} \quad \text{(definition)}$$

Properties of Exponents Exercise for at Home

At Home Exercise

Prove that $\left(\frac{a}{b}\right)^{-n} = \frac{b^n}{a^n}$. (Hint: write out both sides of the equations using the other definitions and properties of exponents.)

Problem

Simplify the following expression:

$$\left(\frac{10}{3}\right)^{-2}$$

$$\left(\frac{10}{3}\right)^{-2}$$

$$\left(\frac{10}{3}\right)$$

$$=\frac{10^{-3}}{3^{-2}}$$

$$\left(\frac{10}{3}\right)$$

$$=\frac{10^{-2}}{2}$$

$$= \frac{10}{3^{-2}}$$

$$\left(\frac{10}{3}\right)$$

$$=\frac{10^{-2}}{3^{-2}}$$

$$=\frac{3^2}{10^2}$$

$$=\boxed{\frac{9}{100}}$$

Problem

Simplify the following expression:

8 <i>x</i>	$\int_{0}^{2} yz$	
$\frac{1}{2x^{-}}$	$^{5}v^{4}$	z^2

$$\frac{8x^{-3}yz^5}{2x^{-5}y^4z^2}$$

 $\frac{8x^{-3}yz^{5}}{2x^{-5}y^{4}z^{2}}$ $=\frac{8x^{-3}yz^{5}z^{-2}}{2x^{-5}y^{4}}$

 $\frac{8x^{-3}yz^{5}}{2x^{-5}y^{4}z^{2}}$

 $=\frac{8x^{-3}yz^5z^{-2}}{2x^{-5}y^4}$

 $=\frac{8x^{-3}yz^3}{2x^{-5}v^4}$

- $=\frac{8x^{-3}yz^{5}z^{-2}}{2x^{-5}y^{4}}$

 $\frac{8x^{-3}yz^{5}}{2x^{-5}y^{4}z^{2}}$

 $=\frac{8x^{-3}yz^3}{2x^{-5}y^4}$

 $= \frac{8x^{-3}x^{5}yz^{3}}{2y^{4}}$

$$=\frac{8x^2yz^3}{2y^4}$$

$$= \frac{8x^2yz^3}{2y^4}$$
$$= \frac{8x^2z^3}{2y^{-1}y^4}$$

$$= \frac{8x^{2}yz^{3}}{2y^{4}}$$

$$= \frac{8x^{2}z^{3}}{2y^{-1}y^{4}}$$

$$= \frac{8x^{2}z^{3}}{2y^{3}}$$

 $= \frac{8x^{2}yz^{3}}{2y^{4}}$ $= \frac{8x^{2}z^{3}}{2y^{-1}y^{4}}$ $= \frac{8x^{2}z^{3}}{2y^{3}}$

 $\frac{4x^2z^3}{v^3}$

More Problems with Exponents

Simplify the following expressions:

$$(5x^4y^{-2})^{-2} \qquad \frac{3*6-2^3}{14-3^2}$$

$$\sqrt[2]{3^2+4^2} \qquad (-2)^4$$

 $\sqrt[2]{\heartsuit}$ or $\heartsuit^{1/2}$ means to take the *square root* of \heartsuit , i.e. $\sqrt[2]{\heartsuit^2} = \heartsuit$.

Applications to Geometry

Important Formulas from Geometry

Applications to Geometry

Area
$$\bigcirc = \pi r^2$$

Circumference
$$\bigcirc = 2\pi r$$

Area
$$\triangle = \frac{1}{2}bh$$

Note: r - radius of \bigcirc , b - base of \triangle , h - height of \triangle

Algebra Applied to Geometry

Problems

• What is the circumference of a circle with radius 3♦ feet?

• What is the area of a triangle with base equal to 1 foot and height equal to 6♥ inches?

Algebra Applied to Geometry

Problems

• What is the circumference of a circle with radius

Solution: $2\pi(3\diamondsuit) = 6\pi\diamondsuit$ feet

What is the area of a triangle with base equal to

1 foot and height equal to $6 \ensuremath{\heartsuit}$ inches?

Solution:
$$\frac{1}{2}(1)\left(\frac{1}{2}\heartsuit\right) = \frac{1}{4}\heartsuit \text{ feet}^2$$

Working with Expressions

Evaluating Algebraic Expressions for Given Values.

Evaluating Expressions for Given Values

Problems

Evaluate the expression $y = \sqrt[2]{2x+1}$ for x = 4.

$$y = \sqrt[2]{2x+1}$$

$$y = \sqrt[2]{2x+1}$$

$$y = \sqrt[2]{2(4) + 1}$$

$$y = \sqrt[2]{2x + 1}$$

$$y = \sqrt[2]{2(4) + 1}$$

$$y = \sqrt[2]{8 + 1}$$

$$y = \sqrt[2]{2x + 1}$$

$$y = \sqrt[2]{2(4) + 1}$$

$$y = \sqrt[2]{8 + 1}$$

$$y = \sqrt[2]{9}$$

$$y = \sqrt[2]{2x + 1}$$

$$y = \sqrt[2]{2(4) + 1}$$

$$y = \sqrt[2]{8 + 1}$$

$$y = \sqrt[2]{9}$$

$$y = 3$$

Problems

 $\alpha = -125$.

Evaluate the expression $\bigstar = \frac{1}{5} \sqrt[3]{\alpha}$, where

$$\sqrt[3]{\nabla}$$
 or $\nabla^{1/3}$ means to take the *cube root* of ∇ , i.e. $\sqrt[3]{\nabla^3} = \nabla$.

$$\bigstar = \frac{1}{5} \sqrt[3]{\alpha}$$

$$\star = \frac{1}{5}\sqrt[3]{\alpha}$$

$$\star = \frac{1}{5}\sqrt[3]{-125}$$

$$\star = \frac{1}{5}\sqrt[3]{\alpha}$$

$$\star = \frac{1}{5}\sqrt[3]{-125}$$

$$\bigstar = \frac{1}{5}(-5)$$

$$\star = \frac{1}{5}\sqrt[3]{\alpha}$$

$$\star = \frac{1}{5}\sqrt[3]{-125}$$

$$\star = \frac{1}{5}(-5)$$

$$\star = \frac{1}{5}\sqrt[3]{\alpha}$$

$$\star = \frac{1}{5}\sqrt[3]{-125}$$

$$\star = \frac{1}{5}(-5)$$

$$\star = -1$$

Note: $(negative\#)^{odd\#}$ is negative and $(negative\#)^{even\#}$ is positive

Problems

Problems

$$\spadesuit = | \clubsuit - 5 |$$

Problems

$$\spadesuit = | \clubsuit - 5 |$$

$$= |2 - 5|$$

Problems

$$\spadesuit = | \clubsuit - 5 |$$

$$= |2 - 5|$$

$$= |-3|$$

Problems

Evaluate the expression $\Phi = |\Phi - 5|$, where $\Phi = 2$.

$$\spadesuit = | -5|$$

$$= |2 - 5|$$

$$\Phi = |-3|$$

Data

Working with Data.

Which Algebraic Expression Represents the Data?

X	у
1	2
2	6
3	10
4	14

Which Algebraic Expression Represents the Data?

X	y	
1	2	y = 3x + 1
2	6	y = x + 4
3	10	·
4	14	y = 4x - 2

Which Algebraic Expression Represents the Data?

$$x \mid y$$

1 2
 $y = 3x + 1$

2 6
 $y = x + 4$

3 10
 $y = 4x - 2$

What Algebraic Expression Represents the Data?

θ	Δ
5	7
7	9
0	2
-3	-1
-8	-6

What Algebraic Expression Represents the Data?

θ	Δ	The following
5	7	expression models
7	9	the data.
0	2	$\Delta = \theta - \alpha$
-3	-1	$\Delta - v - \alpha$
-8	-6	Find $lpha$.

What Algebraic Expression Represents the Data?

The following expression models the data.

$$\Delta = \theta - \alpha$$

Find α .

What was the Original Data Set?

♦	\Diamond
-1	
0	
1	
8	
125	

$$\heartsuit = \sqrt[3]{\diamondsuit} - 5$$

What was the Original Data Set?

♦	\Diamond
-1	-6
0	-5
1	-4
8	-3
125	0

$$\heartsuit = \sqrt[3]{\diamondsuit} - 5$$

Next Time...

Relations, Domains & Ranges

Copyright 2016 Crista Moreno. Algebra Lecture 3 is made available under the Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/.

