Copyright 2016 Crista Moreno. Algebra Lecture 11 is made available under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.



#### Algebra Lecture 11

Crista Moreno

December 19, 2016

#### Topics

#### Topics Covered Thus Far

- Solving Linear Equations and Word Problems
- Solving Linear Inequalities and Word Problems
- ullet Inequalities on the Real Number Line  $\mathbb{R}^1$
- Systems of Linear Equations
- Systems of Linear Inequalities

## Recall the possible ways in which two lines can be drawn in the plane $\mathbb{R}^2$ .



• Not Parallel (*m*<sub>blue</sub> < 0 and *m*<sub>pink</sub> > 0)

- Not Parallel (*m*<sub>blue</sub> < 0 and *m*<sub>pink</sub> > 0)
- One Point of Intersection (i.e. has one solution)

- Not Parallel (*m*<sub>blue</sub> < 0 and *m*<sub>pink</sub> > 0)
- One Point of Intersection (i.e. has one solution)
- The System is Linearly **Independent** (i.e. exactly one solution)

- Not Parallel (*m*<sub>blue</sub> < 0 and *m*<sub>pink</sub> > 0)
- One Point of Intersection (i.e. has one solution)
- The System is Linearly **Independent** (i.e. exactly one solution)
- The System is Consistent (has at least one solution)

- Not Parallel (*m*<sub>blue</sub> < 0 and *m*<sub>pink</sub> > 0)
- One Point of Intersection (i.e. has one solution)
- The System is Linearly **Independent** (i.e. exactly one solution)
- The System is Consistent (has at least one solution)
- To the left of the point of intersection the blue line is greater, and to the right the pink line is greater.

- Not Parallel (*m*<sub>blue</sub> < 0 and *m*<sub>pink</sub> > 0)
- One Point of Intersection (i.e. has one solution)
- The System is Linearly **Independent** (i.e. exactly one solution)
- The System is Consistent (has at least one solution)
- To the left of the point of intersection the blue line is greater, and to the right the pink line is greater.

 $m_{blue}$  - slope of the blue line,  $m_{pink}$  - slope of the pink line.

## Come up with a **Linear System** that

represents this case and find the solution to

this system.

### Come up with a Linear System that

represents this case and find the solution to

this system.





• **Parallel** (Slopes are the same  $m_{blue} = m_{green}$ )

- **Parallel** (Slopes are the same  $m_{blue} = m_{green}$ )
- Zero Points of Intersection (i.e. has no solution)

- **Parallel** (Slopes are the same  $m_{blue} = m_{green}$ )
- Zero Points of Intersection (i.e. has no solution)
- The System is Linearly **Independent** (for reasons not discussed here)

- **Parallel** (Slopes are the same  $m_{blue} = m_{green}$ )
- Zero Points of Intersection (i.e. has no solution)
- The System is Linearly **Independent** (for reasons not discussed here)
- The System is Inconsistent (has no solution)

- **Parallel** (Slopes are the same  $m_{blue} = m_{green}$ )
- Zero Points of Intersection (i.e. has no solution)
- The System is Linearly **Independent** (for reasons not discussed here)
- The System is Inconsistent (has no solution)
- The green line is always greater than the blue line.

- **Parallel** (Slopes are the same  $m_{blue} = m_{green}$ )
- Zero Points of Intersection (i.e. has no solution)
- The System is Linearly **Independent** (for reasons not discussed here)
- The System is Inconsistent (has no solution)
- The green line is always greater than the blue line.

Note that the *y*-intercepts are different  $b_{blue} \neq b_{green}$ .

## Come up with a Linear System that

represents this case.

## Come up with a Linear System that

represents this case.



• Same Line (Slopes are the same  $m_{pink} = m_{purple}$  and

y-int are the same  $b_{pink} = b_{purple}$ )

• Same Line (Slopes are the same  $m_{pink} = m_{purple}$  and

y-int are the same  $b_{pink} = b_{purple}$ )

• Infinite Points of Intersection (i.e. has infinitely many solutions)

- Same Line (Slopes are the same m<sub>pink</sub> = m<sub>purple</sub> and y-int are the same b<sub>pink</sub> = b<sub>purple</sub>)
- Infinite Points of Intersection (i.e. has infinitely many solutions)
- The System is Linearly **Dependent** (more than one solution)

- Same Line (Slopes are the same m<sub>pink</sub> = m<sub>purple</sub> and y-int are the same b<sub>pink</sub> = b<sub>purple</sub>)
- Infinite Points of Intersection (i.e. has infinitely many solutions)
- The System is Linearly **Dependent** (more than one solution)
- The System is **Consistent** (has at least one solution)

- Same Line (Slopes are the same m<sub>pink</sub> = m<sub>purple</sub> and y-int are the same b<sub>pink</sub> = b<sub>purple</sub>)
- Infinite Points of Intersection (i.e. has infinitely many solutions)
- The System is Linearly **Dependent** (more than one solution)
- The System is **Consistent** (has at least one solution)
- The pink line is always equal to the purple line.

## Come up with a Linear System that

represents this case.

## Come up with a Linear System that

represents this case.



## Inequalities on the Real Number Line $\mathbb{R}^1$

Symbols

# () <,> exclude endpoints [] ≤,≥ include endpoints

or means union  $\cup$ and means intersection  $\cap$ 

## $\{x | x > 4\} \cup \{x | x > 5\}$

## $\{x | x > 4\} \cap \{x | x > 5\}$

## $\{x \mid -1 < x \le 2\} \cup \{x \mid 3 < x \le 5\}$

## $\{x \mid -1 < x \le 2\} \cap \{x \mid 3 < x \le 5\}$

## $(-\infty,3) \cap (2,3) \cap (2.5,3)$

Copyright 2016 Crista Moreno. Algebra Lecture 11 is made available under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/.

