A Dive into Logistic Regression Modeling

Crista Moreno

June 7, 2019

Crista Moreno

A Dive into Logistic Regression Modeling

lune 7 2019

Outline

Goal: Build a Good Model

- 2 Structure of Biomedical Data
- Which Variables to Include in the Model?
- 4 Logistic Regression
- Overfitting the Model
- 6 Cross Validation

7 Software

Goal Build a Good Logistic Regression Model

Crista Moreno

A Dive into Logistic Regression Modeling

Patient	Variable 1	Variable 2	•••	Variable M	Class
1	m _{1,1}	m _{1,2}		m _{1,M}	normal
2	m _{2,1}	m _{2,2}	• • •	m _{2,M}	sick
3	m _{3,1}	m _{3,2}	• • •	m _{3,<i>M</i>}	normal
4	m _{4,1}	m _{4,2}	• • •	m _{4,<i>M</i>}	normal
:	:	:		:	:
N	m _{<i>N</i>,1}	m _{<i>N</i>,2}	• • •	m _{N,M}	sick

Patient	Variable 1	Variable 2	•••	Variable M	Class
1	m _{1,1}	m _{1,2}	• • •	m _{1,M}	normal
2	m _{2,1}	m _{2,2}	• • •	m _{2,M}	sick
3	m _{3,1}	m _{3,2}	• • •	m _{3,M}	normal
4	m _{4,1}	m _{4,2}	•••	m _{4,<i>M</i>}	normal
:	:	:			:
N	m _{<i>N</i>,1}	m _{<i>N</i>,2}	•••	m _{N,M}	sick

Important Numbers

 $m_{3,4}$ - 4th variable measurement for the 3rd patient

Patient	Variable 1	Variable 2		Variable M	Class
1	m _{1,1}	m _{1,2}		m _{1,<i>M</i>}	normal
2	m _{2,1}	m _{2,2}	• • •	m _{2,<i>M</i>}	sick
3	m _{3,1}	m _{3,2}	• • •	m _{3,M}	normal
4	m _{4,1}	m _{4,2}	•••	m _{4,<i>M</i>}	normal
:	:	:			:
N	m _{<i>N</i>,1}	m _{<i>N</i>,2}		m _{N,M}	sick

Important Numbers

 $m_{3,4}$ - 4th variable measurement for the 3rd patient N - Total Number of Data Points (number of rows, patients etc.)

Patient	Variable 1	Variable 2		Variable M	Class
1	m _{1,1}	m _{1,2}		m _{1,<i>M</i>}	normal
2	m _{2,1}	m _{2,2}	• • •	m _{2,<i>M</i>}	sick
3	m _{3,1}	m _{3,2}	• • •	m _{3,M}	normal
4	m _{4,1}	m _{4,2}	•••	m _{4,<i>M</i>}	normal
:	:	:			:
N	m _{<i>N</i>,1}	m _{<i>N</i>,2}		m _{N,M}	sick

Important Numbers

 $m_{3,4}$ - 4th variable measurement for the 3rd patient *N* - Total Number of Data Points (number of rows, patients etc.) *M* - Total Number of Variables (measurements, parameters etc.)

Patient	Variable 1	Variable 2		Variable M	Class
1	m _{1,1}	m _{1,2}		m _{1,<i>M</i>}	normal
2	m _{2,1}	m _{2,2}	• • •	m _{2,<i>M</i>}	sick
3	m _{3,1}	m _{3,2}	• • •	m _{3,M}	normal
4	m _{4,1}	m _{4,2}	•••	m _{4,<i>M</i>}	normal
:	:	:			:
N	m _{<i>N</i>,1}	m _{<i>N</i>,2}		m _{N,M}	sick

Important Numbers

 $m_{3,4}$ - 4th variable measurement for the 3rd patient

- N Total Number of Data Points (number of rows, patients etc.)
- M Total Number of Variables (measurements, parameters etc.)
- C Total Number of Classes (labels i.e. normal vs diseased)

Which Variables to Include in the Model?

Which Variables to Include in the Model?

Question 1

What is the probability that patient belongs to class c, given that the data X is equal to x?

$$P(Y=c|X=x)$$

Which Variables to Include in the Model?

Question 1

What is the probability that patient belongs to class c, given that the data X is equal to x?

$$P(Y=c|X=x)$$

Question 2

How to determine which of the M variables to use for the model?

Answer Question 2: Correlation Matrix

A Dive into Logistic Regression Modeling

June 7, 2019 6 / 3

Answer Question 2: Correlation Matrix

Crista Moreno

A Dive into Logistic Regression Modelin

June 7, 2019 6 / 1

Answer Question 1: Logistic Regression Model

$$p(Y = c | X = x)$$

Answer Question 1: Logistic Regression Model

$$p(Y = c | X = x)$$
$$= p(X) = \frac{e^{\beta \cdot \mathbf{X}}}{1 + e^{\beta \cdot \mathbf{X}}}$$

Crista Moreno

A Dive into Logistic Regression Modeling

lune 7 2019

Answer Question 1: Logistic Regression Model

$$p(Y = c | X = x)$$
$$= p(X) = \frac{e^{\beta \cdot X}}{1 + e^{\beta \cdot X}}$$
$$p(-\infty) = 0, \qquad p(+\infty) = 1$$

Crista Moreno

A Dive into Logistic Regression Modeling

June 7, 2019 7 /

Logistic Regression Model with a Single Variable

Dive into Logistic Regression Modeling

June 7, 2019 8 / 1

Logistic Regression Model with Multiple Variables

$$p(\boldsymbol{X}) = rac{e^{eta_0 + eta_1 X_1 + \dots + eta_\gamma X_\gamma}}{1 + e^{eta_0 + eta_1 X_1 + \dots + eta_\gamma X_\gamma}} = rac{e^{eta \cdot \boldsymbol{X}}}{1 + e^{eta \cdot \boldsymbol{X}}}$$

Crista Moreno

A Dive into Logistic Regression Modeling

June 7, 2019 9 / 1

Great! We have a model! Are we done?

A Dive into Logistic Regression Modeling

June 7 2010

Great! We have a model! Are we done? Not so fast.

Crista Moreno

A Dive into Logistic Regression Modeling

June 7, 2010

• Adding too many variables \Rightarrow Overfitting & \uparrow Accuracy

Adding too many variables ⇒ Overfitting & ↑ Accuracy
↑ Accuracy ⇒ ↑ Sensitivity and ↑ Specificity

- Adding too many variables \Rightarrow Overfitting & \uparrow Accuracy
- \uparrow Accuracy \Rightarrow \uparrow Sensitivity and \uparrow Specificity
- \uparrow Sensitivity and \uparrow Specificity \Rightarrow Misleading Model

- Adding too many variables \Rightarrow Overfitting & \uparrow Accuracy
- \uparrow Accuracy \Rightarrow \uparrow Sensitivity and \uparrow Specificity
- \uparrow Sensitivity and \uparrow Specificity \Rightarrow Misleading Model

The simplest model that fits the data is also the most plausible.(Occam's Razor)

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}, \qquad Sensitivity = \frac{TP}{TP + FN}, \qquad Specificity = \frac{TN}{TN + FP}$$

How do we validate our model?

Crista Moreno

A Dive into Logistic Regression Modeling

lune 7 2010

Validating a Model: Back to Data

Patient	Variable 1	Variable 2	 Variable M	Class
1	m1,1	m _{1,2}	 m _{1,} <i>M</i>	normal
2	m _{2,1}	m _{2,2}	 m _{2,} M	sick
3	m3,1	m _{3,2}	 m _{3,} M	normal
4	m4,1	m _{4,2}	 m4,M	normal
· ·		•	 · ·	· ·
N	m N ,1	m _{N,2}	 т N , М	sick

Validating a Model: Back to Data

Patient	Variable 1	Variable 2	 Variable M	Class
1	m _{1,1}	m _{1,2}	 m _{1,} <i>M</i>	normal
2	m _{2,1}	m _{2,2}	 m _{2,} M	sick
3	m3,1	m _{3,2}	 т _{з, М}	normal
4	m4,1	m _{4,2}	 m4, <i>M</i>	normal
· ·		•	 •	•
N	m N ,1	m ∧ ,2	 т N , М	sick

Data \mathcal{D} for Model

Data	Observation	Input (Variables)	Output (Class)
\mathcal{D}_1	1	X1	Y ¹
\mathcal{D}_2	2	X ²	Y ²
\mathcal{D}_3	3	X ³	Y ³
\mathcal{D}_4	4	X ⁴	Y ⁴
•	•	:	
\mathcal{D}_N	N	XN	YN

 $\mathcal{D} = \{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \dots, \mathcal{D}_N\}$

Crista Moreno

• Given the data for modeling

 $\mathcal{D} = \{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10}\}$

• Given the data for modeling

 $\mathcal{D} = \{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10}\}$

 ${\scriptstyle \bullet}$ Partition the data ${\cal D}$ into a Training set and Test set

$$\underbrace{ \underbrace{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7}_{\text{Training Set}}, \underbrace{\mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10}}_{\text{Test Set}} }_{\text{Test Set}}$$

• Given the data for modeling

 $\mathcal{D} = \{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10}\}$

 ${\scriptstyle \bullet}$ Partition the data ${\cal D}$ into a Training set and Test set

$$\underbrace{ \underbrace{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7}_{\text{Training Set}}, \underbrace{\mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10}}_{\text{Test Set}} }_{\text{Test Set}}$$

• Use Training set to build a model

• Given the data for modeling

 $\mathcal{D} = \{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10}\}$

 ${\scriptstyle \bullet}$ Partition the data ${\cal D}$ into a Training set and Test set

$$\underbrace{ \underbrace{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7}_{\text{Training Set}}, \underbrace{\mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10}}_{\text{Test Set}} }_{\text{Test Set}}$$

• Use Training set to build a model

• Test model on Test set to get the model's performance.

• Given the data for modeling

 $\mathcal{D} = \{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10}\}$

 ${\scriptstyle \bullet}$ Partition the data ${\cal D}$ into a Training set and Test set

$$\underbrace{ \underbrace{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7}_{\text{Training Set}}, \underbrace{\mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10}}_{\text{Test Set}} }_{\text{Test Set}}$$

• Use Training set to build a model

• Test model on Test set to get the model's performance.

Now we have the model's performance, are we done?

• Given the data for modeling

 $\mathcal{D} = \{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10}\}$

 ${\scriptstyle \bullet}$ Partition the data ${\cal D}$ into a Training set and Test set

$$\underbrace{ \underbrace{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7}_{\text{Training Set}}, \underbrace{\mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10}}_{\text{Test Set}} }_{\text{Test Set}}$$

• Use Training set to build a model

• Test model on Test set to get the model's performance.

Now we have the model's performance, are we done? *Classic approach works well for large data sets.*

Crista Moreno

A Dive into Logistic Regression Modeling

June 7, 2019 14 /

Crista Moreno

A Dive into Logistic Regression Modeling

lune 7 2019

• Select k e.g. k = 5 folds

Crista Moreno

A Dive into Logistic Regression Modeling

June 7, 2019

- Select k e.g. k = 5 folds
- Partition data into a Training Set and Validation Set in the following fashion:

• Select k e.g. k = 5 folds

• Partition data into a Training Set and Validation Set in the following fashion:

 $\begin{array}{lll} \mbox{fold 1} & \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10} \\ \mbox{fold 2} & \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10} \\ \mbox{fold 3} & \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10} \\ \mbox{fold 4} & \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10} \\ \mbox{fold 5} & \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10} \end{array}$

• Select k e.g. k = 5 folds

• Partition data into a Training Set and Validation Set in the following fashion:

 $\begin{array}{lll} \mbox{fold 1} & \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10} \\ \mbox{fold 2} & \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10} \\ \mbox{fold 3} & \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10} \\ \mbox{fold 4} & \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10} \\ \mbox{fold 5} & \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10} \end{array}$

• For each fold train model on the Training Set and get performance on Validation Set

• Select k e.g. k = 5 folds

• Partition data into a Training Set and Validation Set in the following fashion:

 $\begin{array}{lll} \mbox{fold 1} & \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10} \\ \mbox{fold 2} & \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10} \\ \mbox{fold 3} & \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10} \\ \mbox{fold 4} & \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10} \\ \mbox{fold 5} & \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5, \mathcal{D}_6, \mathcal{D}_7, \mathcal{D}_8, \mathcal{D}_9, \mathcal{D}_{10} \end{array}$

- For each fold train model on the Training Set and get performance on Validation Set
- The variance and average of the performance helps indicate how well this model can make predictions on future data.

June 7, 2019 15 /

Software

Software

- **R** A **free software** (GNU Affero GPL) environment for statistical computing and graphics.
- **RStudio** is a free and open-source integrated development environment (IDE) for R.

