Math Article Review Symmetries of Fractal Tilings

Crista Moreno

May 10, 2009

Contents
1 Introduction

2 Fractals
2.1 Fractal Fundamentals,

2.2 Lévy Dragon

3 Tiling
3.1 Square Tiling
3.2 Triangle Tiling

3.3 Underlying Mathematics in Tiling
4 Julia Sets (Fractals and Complex Analysis)
5 Conclusion
References

Appendix A

19

20

20

21

1 Introduction

This review is a class project for Professor James Morrow’s undergraduate honors mathe-
matics course at the University of Washington in the spring of 2009. It was an honor and
pleasure to be a student in Professor Morrow’s course, and I thank him for inspiring me to
study mathematics.

This review explores fractal tiling of the plane as discussed in Symmetries of Fractal
Tilings by Palagallo & Salcedo (2008) [4]. For a more in depth read on fractals the reader is
highly encouraged to look into The Fractal Geometry of Nature by Benoit B. Mandelbrot.
Section 2.1 examines the definition of a fractal, and gives some mathematical background
from set theory and point set topology. Section 2.2 gives the algorithm for producing the Lévy
Dragon Fractal. Section 3.1 investigates the Pinwheel Fractile tiling of the plane Palagallo
& Salcedo [4].

2 Fractals

2.1 Fractal Fundamentals

In the late 20" century, mathematician Benoit Mandelbrot introduced the study of fractals.
A fractal is a complex geometric figure that continues to display self-similarity when viewed
on all scales. Mandelbrot developed the idea of fractional dimension, and coined the term
fractal. One of the fundamental characteristics of fractals is that the length of its boundary
is infinite, but its area is finite. The examples of fractals presented in this review appear
strange and exotic, but fractals are in fact inherent in nature. They appear in the formation
of clouds, mountain ranges, trees etc. [5]. In this review we provide the mathematical
background for understanding the definition of a fractal, and then give the algorithm for

constructing fractals in the plane. Let us commence with the formal definition of a fractal

as stated by Mandelbrot [3].

Definition 1. A fractal is a set for which the Hausdorff Besicovitch dimension (dimension
of a fractal) D strictly exceeds the topological dimension Dr. Where Dy is always an integer

and every set with a noninteger D s a fractal.

In order to understand Definition 1, we provide some background from set theory and

point set topology.
Definition 2. A space X is a set. The points of the space are the elements of the set.

Definition 3. Let X be a non-empty set. A real-valued function d defined on X x X, i.e.
ordered pairs of elements in X, is called a metric or distance function on X if and only

iof it satisfies, for every a,b,c € X the following axioms:
M1: d(a,b) >0 and d(a,a) =0

M2: (Symmetry) d(a,b) = d(b,a)

M3: (Triangle Inequality) d(a,c) < d(a,b) + d(b,c)
My: If a # b, then d(a,b) >0

Definition 4. A metric space (X,d) is complete if every Cauchy sequence {x,}3°, in X

has a limit x € X.

Definition 5. Let (X,d) be a complete metric space. The 5 (X) denotes the space whose

points are the compact subsets of X, other than the empty set.

Definition 6. A family of sets € = {C;}icr is said to be a covering of a set E (or to cover
E) if

ECUCZ-

=

H

Figure 1: Covering

Definition 7. Let (X,d) be a complete metric space. Let A € 7 (X). Let A (€) denote the

minimum number of balls of radius € needed to cover A. If

exists, then D is called the fractal dimension of A.

A topology for a set X is a family .7 of open subsets belonging to X, such that the null

set, X, and the union of an arbitrary number of open sets, and the intersection of finitely

many open sets, are open (see Definition 8).

Definition 8. Let X be a nonempty set. A collection T of subsets of X is a topology on

X if and only if T satisfies the following axioms:

O1: 0 (empty set) and X are in 7.

02: The union of the elements of any subcollection of 7 is in 7.

03: The intersection of the elements of any finite subcollection of 7 is in 7.

The members of T are then called .7 -open sets, or simply open sets. The pair (X, 7)

15 called a topological space.

Example 1. The collection of sets 7 in Figure 2 form a topology on the set X.

4

X ={u,v,w}, 7 ={X,0,{u},{v},{u,v}}
X

Y

Figure 2: Topology

The topological space (X, .7) has a topological dimension Dr if, for every covering €,
has a refinement %" such that Vo € X occurs in at most Dy + 1 sets in ¢, and Dy is the

smallest such integer.

Definition 9. A refinement of a covering € of E is another covering €' of E such that

each set C% in 6" is contained in some set belonging to €.

Example 2. Figure 3 displays a refinement, from the union of blue colored sets to the union

of colored sets, of the covering of the set in purple.

I_

n

L]

|

Figure 3: Refinement of a Covering

The word fractal is derived from the Latin word fractus, meaning broken, shattered,
or having been broken. This is appropriate because the meaning we wish to preserve is
“Irregular fragments”. The fractal dimension gives a way to compare fractals [1].

A more intuitive way of interpreting the fractal dimension is to consider the geometric

figure of a broken curve, where the number of breaks of the curve is .4"(¢) and the length of

5

each piece is 1/e.

Example 3. In Figure 4(b) there are two breaks, and the length of the two pieces are both

\/1/2 the size of the original length Figure 4(a). Here the fractal dimension of the Léuvy
log(2)

o INTTIE

) level 1 (b) level 2) level 3) level 4

Dragon fractal, displayed in Figure 5, is D = = 2.

Figure 4: Lévy Dragon levels

2.2 Lévy Dragon

The Lévy Dragon Fractal, also known as the Lévy C Curve invented by a French mathe-
matician Paul Pierre Lévy, is constructed from the base pattern +F- -F+4. Where + means
to turn 45°, F means to draw a line, and - means to turn —45°. This pattern expanded
recursively produces the beautiful symmetric fractal illustrated in Figure 5. The fractal was
generated in Java, and the color was changed every few iterations to help display the growth

of the fractal.

Figure 5: Lévy Dragon Fractal

3 Tiling

3.1 Square Tiling

To introduce the concepts discussed in Symmetries of Fractal Tilings [4] this section will

first consider the Pinwheel Fractal tiling of the Euclidean plane R?.

Definition 10. A tiling of the plane R? is a countable family {A;} of compact sets that

cover the plane with int(A;) N int(A;) = 0 fori # j.

For a given number of bounded sets, the interior of each set does not intersect the inte-

rior of any other sets, i.e. the tiling will have no over lap.

For the first example, the plane is tiled with closed unit squares. Each square is labelled

1 — 9 starting from the lower left corner and ending at the top right corner as in Figure 6.

Figure 6: Tiling of the plane with unit squares.

Next the square tiles 1, 3, 7, and 9 are translated to their corresponding position in the

square adjacent to their original square as shown in Figure 7.

co
-3

Figure 7: Pinwheel Fractal Pattern

Figure 7 displays the Level 1 pattern for the Pinwheel Fractal. This pattern is allowable; a
necessary property for tiling, because otherwise the resulting fractal would have overlapping

tiles and thus would not be self-similar.

Definition 11. An allowable pattern is a pattern that contains each tile, represented by

a number, in the plane exactly once.

This process is then repeated for each individual pink square resulting in 81 squares, each

one ninth the size of the original square as shown in Figure 8(c).

(a) Level 0 (b) Level 1 (¢c) Level 2

Figure 8: Pinwheel Fractal Stages

(a) Level 3 (b) Tile T

Figure 9: Pinwheel Fractal Stages

The process is repeated indefinitely, and with each iteration the area approaches its lim-
iting tile 7', Figure 9(b), which has a side length of 3,/ %. The tile T" is connected because

it is composed of connected sets, but does not have a connected region.

Definition 12. A topological space X is said to be connected if and only if there does not

10

exist a pair of open nonempty subsets E and F such that ENF =0 and EUF = X.

Definition 13. A region R is stmply connected if it has no holes; all closed curves can

be shrunk to a point without passing through points in RC.

a) Simply Connected) Not Simply Connected

Example 4.

Definition 14. A closed curve C' is simple if it does not intersect itself.

(00Q

c¢) Simple) Not Simple

Example 5.

For each iteration the color is changed to show that no square coincides with another, and

that the self-similarity of the fractal is preserved.

11

(e) Level 0 (f) Level 1 (g) Level 2

Figure 10: Pinwheel Fractal Stages

(a) Level 3 (b) Level 4

Figure 11: Pinwheel Fractal Stages

The objective in constructing these fractiles is to tile the plane R2?. After a finite num-

ber of iterations the fractile reaches its limiting area. The four identical fractals are then fit

12

together onto its boundary as shown in Figures 12(a), 12(b), 13(a), and 13(b). Looking at
each of the stages, having restrained our fractile to be made up of an allowable pattern has
paid off. Zooming in on the figures, each level 1 tile has preserved the pattern and the plane

is completely tiled.

(a) Level 2 (b) Level 3

Figure 12: Pinwheel Fractal Tiling the Euclidean plane

13

(a) Level 4 (b) Level 5

Figure 13: Pinwheel Fractal Tiling the Euclidean Plane

3.2 Triangle Tiling

Presented here is my own fractal tiling of the plane using triangles. We begin with a triangle
tiling of the plane. As with the square tiling, triangle tiling requires an allowable pattern.
In Figure 14 the triangle outlined in black will serve as our base figure. In this triangle there
are nine inner triangles. The triangles labelled 1, 2, 4, 5, 7, and 9 are translated outward
onto their corresponding positions in the triangles adjacent to the base triangle, as shown
in Figure 14. The process is then repeated for each of the triangles colored in pink. The

second iteration produces the image in Figure 15(c) and so on.

14

Figure 14: Triangle Pattern

(a) Level 0 (b) Level 1

(c) Level 2

Figure 15: Triangle Fractal Stages

15

(a) Level 3 (b) Level 4

Figure 16: Triangle Fractal Stages

As with square tiling, the triangle fractal approaches a limiting area. We repeat the same
process as with the square tiling, but this time because the triangle fractal has more sym-
metries, every adjacent fractile has to be rotated 60°. In each of the Figures 17(a), 17(b),

and 18 notice that there are two triangle fractiles fitted together without any overlap.

(a) Level 2 (b) Level 2

Figure 17: Triangle Fractal Tiling of R?

16

Figure 18: Triangle Fractal Tiling of R?

3.3 Underlying Mathematics in Tiling

To tile the entire R? plane we need to think in two dimensions. Let M be a (2 X 2) square
matrix with integer entries, where the columns represent the scaling factors of our tile, then

the inverse M~ is a contractive mapping.

=
I

(1)

Definition 15. A transformation f : X — X on a metric space (X, d) is called contractive

mapping or a contraction mapping if there is a constant 0 < s < 1 such that

d(f(z), f(y)) < s*d(x,y) Yo,y e X.

The number s s called a contractivity factor of f.

17

Then for j = 1,...n? J. Palagallo & M. Salcedo then define the mappings

T 1/n 0 x
fi = * +rj

T 0 1/n T
so that the square is scaled to 1/9 the original size of both the x and y components. The
addition of r; serves to translate the image. Its initial integer coordinates (z,y) given as
the lower left corner of each of the n? squares in the selected pattern. The set of functions
{f;} and the set of vectors {r;} is special because together they satisfy the requirements
such that the iterated function system will converge to a compact set, called the attractor.

In other words the functions will converge to our desired tiling.

Definition 16. An iterated function system consists of a complete metric space (X, d)
together with a finite set of contractive mappings w, : X — X, with respect to contractivity

factors s, form=1,2,... N.

Theorem 1. Let {X;w,,n=1,2,..., N} be a hyperbolic iterated function system with con-
tractivity factor s. Then the transformation W : (X) — (X)) defined by

for all B € 5 (X) is a contraction mapping on the complete metric space 7 (X, h(d)) with

contractivity factor s. That is
h(W(B),W(C)) < sxh(B,C)
for all B,C € 7 (X). Its unique fixed point, A € F(X), obeys

A=W(A) = Jwa(4),

18

and is given by A = lim,,_,oo W(B) for any B € 7€ (X)

Definition 17. The fized point A € 7 (X) described in Theorem 1 is called the attractor

of the iterated function system.

4 Julia Sets (Fractals and Complex Analysis)

Let f(z) be an analytic function that maps the extended complex plane C* onto itself, and
let R(z) = P(z)/Q(z) where x € C*. The Julia set is the set of points of the iteration of
f(z), f(f---f(2)--+)), n times, n = 1,2,3,... The Fatou set of f(z), denoted by F = F(z),
is all the points in the extended complex plane that have an open neighborhood U such that
the iterations of f(z) to U form a normal family of analytic functions on U. The Julia set is
the complement of the Fatou set, and is closed. Since these two sets are complementary of

each other on the extended plane, we have the following result

Theorem 2. The Fatou set and and the Julia set of a rational function f(z) are invariant,

that is, f(F) C F and f(J) C T

Fundamental Properties of Julia Sets
e Jr # () and contains more than countable many points.

The Julia sets of R and RF, k =1,2,3, ..., are identical.

R(JR) =Jp= R_I(JR).

V x € Jg the inverse orbit O 1(z) is dense in Jx.

If v is an attractive cycle of R, then A(y) C Fr = {C Uoo} — Jg and 0A(y) = Jg

19

5 Conclusion

Palagallo and Salcedo’s paper on fractal tiling of the plane gives an artistic and colorful
example of one of the areas of application for fractals. In building the code for the Lévy
Dragon and other fractals, I was amazed at how a recursive algorithm of such a simple
pattern could produce such complex figures that explain very different phenomena. Fractals
also play a big role in complex analysis, which has numerous applications in physics and
engineering. Fractal geometry has potential to expand and take foot hold into many areas

of mathematics and the life sciences.

References

[1] Michael Barnsley. Fractals everywhere. Harcourt Brace Jovanovich, San Diego, 1988.

[2] J. L. Kelley and Isaac Namioka. Linear Topological Spaces, chapter 2, page 27. D. VAN
NOSTRAND COMAPNY, INC., Princeton, New Jersey, 1963.

[3] Benoit B. Mandelbrot. The fractal geometry of nature. W. H. Freeman and Company,
New York, 1977.

[4] Judith Palagallo and Maria Selcedo. Symmetries of fractal tilings. World Scientific,
16(1):69-78, 2008.

[5] Dr. Heinz-Otto Peitgen and Dr. Peter H. Richter. The beauty of fractals, chapter 2, pages

27-29. Springer-Verlag, Berlin, 1986. Images of Complex Dynamical Systems.

[6] Stuart Reges and Marty Stepp. Building Java programs. Pearson Addison Wesley, Boston,
2008. A Back to Basics Approach.

20

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Appendix A: JAVA Fractal Generators

Lévy Dragon

/%

x Crista Moreno 05/21/09

x Produces Levy Dragon Fractal.

*/
import java.awt.sx;

import java.util .x;

public class LevyDragon {

public static void main(String [] args) {

DrawingPanel

Graphics g =

drawInstructions (buildInstructions (15), g);

panel = new DrawingPanel (10000/3, 6000/3);

panel . getGraphics ();

panel.save (”LevyDragon.png”);

public static String buildInstructions(int numberOfltr) {

String axiom = "F”;

for (int i =

axiom = "47 4+ axiom 4+ "—7 4+ axiom + "47;

}

return axiom:;

0; i < numberOfltr; i++) {

21

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

public static void drawlnstructions(String instructions, Graphics g) {
Random r = new Random ();
Color custom = new Color (0, 0, 0);
double 1Length = 25/3;
double currentAngle = 0;
double x = 2700.0/3;
double y = 4700.0/3;
for (int i = 0; i < instructions.length(); i++) {
char step = instructions.charAt(i);
switch (step) {
case 'F’:
double x2 = x 4+ (lLength % Math.cos(currentAngle));
double y2 = y + (lLength % Math.sin (currentAngle));
if (i%40 = 0)
custom = new Color(r.nextInt (254), r.nextInt(254),
r.nextInt (254));
g.setColor (custom);
g.drawLine ((int) Math.round(x), (int) Math.round(y),
(int) Math.round(x2), (int) Math.round(y2));
X = X2;
y = ¥2;
break ;
case '+':
currentAngle += —Math.PI/4;
break ;

case '—’:

22

50

51

52

93

54

95

10

11

12

13

14

15

16

17

18

currentAngle += Math.PI/4;

break ;

Square Tiling

/%
x Crista Moreno 05/21/09

x Produces Square Tiling Pinwheel Fractal.

*/
import java.awt.sx;

import java.util.x;

public class pinwheel {

public static void main(String []
DrawingPanel panel = new DrawingPanel (2000, 2000);
Graphics g = panel.getGraphics();
drawInstructions(g)

// panel.save (” Pinwheel.png”);

public static void drawlnstructions(Graphics g) {

double x = 650;
double y = 650;

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

double length = 700.0;
Random r = new Random ();

drawInstructions(g, x, y, length, 3, r);

public static void drawlnstructions(Graphics g, double x, double y,
double length , int itr , Random r) {
if (itr = 3) {
g.setColor (new Color(r.nextInt (254), r.nextInt(254), r.nextInt (275
}
if (itr = 1) {
g.fillRect ((int) Math. floor (x), (int) Math. floor(y),
(int) Math. ceil (length), (int) Math. ceil (length));
} else {
length = length /3;
itr —= 1;
x = x + length;

y =y + length;

drawInstructions (g, x, y, length, itr, r);

drawlnstructions (g, x, y — length, length, itr, r);
drawInstructions(g, x + length, y, length, itr, r);
drawlnstructions (g, x, y + length, length, itr, r);
drawlnstructions (g, x — length, y, length, itr, r);
drawInstructions (g, x + 2xlength, y — length, length, itr, r);
drawlnstructions (g, x — length, y — 2xlength, length, itr, r);
drawInstructions (g, x — 2xlength, y + length, length, itr, r);

24

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

drawInstructions (g, x + length, y 4+ 2xlength, length, itr, r);

Triangle Tiling

/x

x Crista Moreno 05/24/09

x Produces FExample Triangle Tiling Fractal.
*/

import java.awt.sx;

import java.util.x;

public class triangleFractal {
public static final int SIZE = 500;

public static final int LEVEL = 3;

public static void main(String [] args) {
DrawingPanel panel = new DrawingPanel (1000, 750);
Graphics g = panel.getGraphics ();
drawlnstructions(g);

panel.save(” Triangle_Fractal_level3 .png”);

public static void drawlnstructions(Graphics g) {

double[] x = new double || {100+250, SIZE—100+250, SIZE/2+250};

25

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

if (itr

if (itr

double[] y = new double []
g.setColor (Color .BLACK) ;
Random r = new Random ();

drawlnverted (g, x, y, LEVEL, r);

public static void drawlnverted (Graphics g, double|[] x, double[] y,

int itr, Random r) {

g.setColor (new Color(r.nextInt (254), r.nextInt (254),

r.nextInt (254)));

g.fillPolygon (new int []
(int) Math. ceil (x[1]) ,

(int) Math.round(x[2])}, new int []

(int) Math. floor (y[1]),

} else {

itr —= 1;

double
double

double
double

{120+230, 120+230, SIZE—120+230};

{(int) Math. floor (x[0]) ,

{(int) Math. floor (y[0]),
(int) Math. ceil (y[2])},

nBase = (x[1]—x[0])/3;
(nBase /2)xMath.sqrt (3);

47

48

49

50

51

92

53

o4

95

56

o7

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

// upRight triangles

// triangle /4

x2 = new double[] {x[0], x[0] + nBase/2, x[0] + nBase};

y2 = new double[] {y[0] + 2xnHeight, y[0] + nHeight,

y[0] + 2xnHeight };

drawUpRight (g, x2, y2,

// triangle 2

itr , 1r);

x2 = new double[] {x[1] — nBase, x[1] — nBase/2, x[1]};

y2 = new double[] {y[1] + 2«nHeight, y[1] + nHeight,

v[1] + 2xnHeight };

drawUpRight (g, x2, y2,

// triangle 1

x2 = new double[] {x[2] — nBase/2, x[2], x[2] + nBase/2};

itr , r);

y2 = new double[] {y[0] — 2xnHeight, y[0] — 3*nHeight ,

y[0] — 2xnHeight };

drawUpRight (g, x2, y2,

// triangle 7

x2 = new double[] {x[2] — nBase/2, x[2], x[2] + nBase/2};

itr , r);

y2 = new double[] {y[0], y[0] — nHeight, y[0]};

drawUpRight (g, x2, y2,

// triangle 8

27

itr, r);

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

x2 = new double[] {x[0] + nBase/2, x[0] + nBase, x[2]};
y2 = new double[] {y[0] + nHeight, y[0], y[0] + nHeight };

drawUpRight (g, x2, y2, itr, r);

// triangle 6
x2 = new double[] {x[2], x[2] + nBase/2, x[2] + nBase};
y2 = new double[] {y[0] + nHeight, y[0], y[0] + nHeight };

drawUpRight (g, x2, y2, itr, r);

// triangle 3
x2 = new double || {x[2] — nBase/2, x[2], x[2] + nBase/2};
y2 = new double|] {y[2] — nHeight, y[2] — 2+nHeight,

y[2] — nHeight };

drawUpRight (g, x2, y2, itr, r);

// triangle 9

x2 = new double[] {x[2] + 2«nBase, x[2] + 2*nBase +
nBase /2, x[2] + 3xnBase};

y2 = new double[] {y[2], y[2] — nHeight, y[2]};

drawUpRight (g, x2, y2, itr, r);

// triangle 5

x2 = new double[] {x[2] — 3xnBase, x[2] — 3xnBase +
nBase /2, x[2] — 2xnBase};

y2 = new double|] {y[2], y[2] — nHeight, y[2]};

drawUpRight (g, x2, y2, itr, r);

28

99 }

100 }

101

102 public static void drawUpRight(Graphics g, double[]| x, double[] y,
103 int itr , Random r) {

104 if (itr = 2) {

105 g.setColor (new Color(r.nextInt (254), r.nextInt (254),
106 r.nextInt (254)));

107 }

108 if (itr = 0) {

109 g.fillPolygon (new int[] {(int) Math. floor (x[0]),

110 (int) Math.round(x[1]), (int) Math. ceil (x[2])},
111 new int [] {(int) Math.ceil (y[0]), (int) Math. floor(y[1]),
112 (int) Math. ceil (y[2])}, 3);

113 } else {

114 itr —= 1;

115

116 double x2[];

117 double y2[];

118

119 // inverted triangles

120

121 double nBase = (x[2]—x[0])/3;

122 double nHeight = (nBase/2)xMath.sqrt (3);

123

124 // triangle &5

29

125 x2 = new double || {x[1] + 2xnBase, x[1] + 3*nBase,

126 x[1] + 3xnBase — nBase/2};

127 y2 = new double|] {y[1l], y[1l], y[1] + nHeight};

128 drawlnverted (g, x2, y2, itr, r);

129

130 // triangle 9

131 x2 = new double[] {x[1] — 3*nBase, x[1] — 2%nBase,

132 x[1] — 2xnBase — nBase/2};

133 y2 = new double[] {y[1], v[1l], y[l] + nHeight};

134 drawlnverted (g, x2, y2, itr, r);

135

136 // triangle 3

137 x2 = new double[] {x[1] — nBase/2, x[1] + nBase/2, x[1]};
138 y2 = new double || {y[1] + nHeight, y[1] + nHeight,

139 v[1] + 2xnHeight };

140 drawlnverted (g, x2, y2, itr, r);

141

142 // triangle 6

143 x2 = new double[] {x[0] + nBase/2, x[1], x[0] + nBase};
144 y2 = new double[] {y[0] — nHeight, y[0] — nHeight, y[0]};
145 drawlnverted (g, x2, y2, itr, r);

146

147 // triangle 8

148 x2 = new double[] {x[1], x[1] + nBase, x[1] + nBase/2};
149 y2 = new double[] {y[0] — nHeight, y[0] — nHeight, y[0]};
150 drawlnverted (g, x2, y2, itr, r);

30

151

152 // triangle 7

153 x2 = new double[] {x[1] — nBase/2, x[1] + nBase/2, x[1]};
154 yv2 = new double[] {y[0], y[0], y[0] + nHeight };

155 drawlnverted (g, x2, y2, itr, r);

156

157 // triangle 2

158 x2 = new double[] {x[0], x[0] + nBase, x[0] + nBase/2};
159 y2 = new double || {y[1] + nHeight, y[1] + nHeight,

160 v[1] + 2xnHeight };

161 drawlnverted (g, x2, y2, itr, r);

162

163 // triangle 4

164 x2 = new double[] {x[1] + nBase/2, x[2], x[2] — nBase/2};
165 y2 = new double|] {y[1] + nHeight, y[1] + nHeight,

166 y[1] + 2«nHeight };

167 drawlnverted (g, x2, y2, itr, r);

168

169 // triangle 1

170 x2 = new double[] {x[1] — nBase/2, x[1] + nBase/2, x[1]};
171 y2 = new double|[] {y[0] + 2xnHeight, y[0] + 2+*nHeight,
172 y[0] + 3xnHeight };

173 drawlnverted (g, x2, y2, itr, r);

174 }

175 }

176}

31

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

DrawingPanel [6]

/%

Stuart Reges and Marty Stepp

07/01/2005

The DrawingPanel class provides a simple interface for drawing persistent
images using a Graphics object. An internal Bufferedlmage object is used
to keep track of what has been drawn. A client of the class simply

constructs a DrawingPanel of a particular size and then draws on it with

the Graphics object, setting the background color if they so choose.

To ensure that the image 1s always displayed , a timer calls repaint at

reqular intervals.

*/

import java.awt.x;
import java.awt.event.x*;
import java.awt.image.x;
import javax.imageio.x;
import javax.swing.x*;

import javax.swing.event .x;

public class DrawingPanel implements ActionListener {

public static final int DELAY = 250; // delay between repaints in millis

32

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

private static final String DUMPIMAGEPROPERTYNAME = ”drawingpanel.save
private static String TARGETIMAGEFILE NAME = null;
private static final boolean PRETTY = true; // true to anti—alias

private static boolean DUMPIMAGE = false; // true to write DrawingPanel

// to file
private int width, height; // dimensions of window frame
private JFrame frame; // overall window frame
private JPanel panel; // overall drawing surface
private Bufferedlmage image; // remembers drawing commands
private Graphics2D g2; // graphics context for painting
private JLabel statusBar; // status bar showing mouse position

private long createTime:;

static {
TARGET IMAGE FILENAME = System . getProperty (DUMPIMAGE PROPERTY NAME)
DUMPIMAGE = (TARGETIMAGEFILENAME != null);

// construct a drawing panel of given width and height enclosed in a wind
public DrawingPanel(int width, int height) {
this.width = width;
this. height = height;
this.image = new Bufferedlmage (width, height ,
Bufferedlmage . TYPEINT_ARGB);
this.statusBar = new JLabel(”.");

this.statusBar.setBorder (BorderFactory.createLineBorder (Color .BLACK))

33

o1

52

93

54

55

o6

o7

o8

99

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

this

this .

this .

this

.panel = new JPanel(new FlowLayout(FlowLayout.CENTER, 0, 0));
panel .setBackground (Color .WHITE) ;
panel.setPreferredSize (new Dimension(width, height));

.panel.add(new JLabel (new Imagelcon(image)));

// listen to mouse movement

MouselnputAdapter listener = new MouselnputAdapter () {

this .

this
this

this

public void mouseMoved (MouseEvent e) {
DrawingPanel . this.statusBar.setText ("7 (” 4+ e.getX () + 7 ,.7

+ e.getY () + 7)7);

public void mouseExited (MouseEvent e) {

DrawingPanel . this.statusBar.setText(”.”);

panel.addMouseListener (listener);
.panel.addMouseMotionListener (listener);
.82 = (Graphics2D)image. getGraphics ();
.g2.setColor (Color .BLACK) ;

if (PRETTY) {

this.g2.setRenderingHint (RenderingHints . KEY_ANTIALIASING,
RenderingHints . VALUE_ANTIALIAS ON) ;

this.g2.setStroke (new BasicStroke (1.1f));

34

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

this . frame

this . frame.

this . frame.

public
if

}

= new JFrame(” Drawing._.Panel”);
setResizable (false);
addWindowListener (new WindowAdapter () {
void windowClosing (WindowEvent e) {
(DUMPIMAGE) {
DrawingPanel . this.save (TARGET IMAGE FILE NAME) ;

System . exit (0);

1)

this . frame
this . frame
this . frame

this . frame

.getContentPane ().add(panel);
.getContentPane ().add(statusBar, ”South”);
-pack ();

.setVisible (true);

if (DUMPIMACE) {

createTime = System.currentTimeMillis ();

this . frame.toBack ();

} else {

this.toFront ();

// repaint timer so that the screen will update

new Timer (DELAY, this).start ();

35

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

// used for an internal timer that keeps repainting
public void actionPerformed (ActionEvent e) {
this.panel.repaint ();
if (DUMPIMAGE && System.currentTimeMillis () >
createTime + 4 % DELAY) {
this.frame.setVisible (false);
this . frame. dispose ();
this.save (TARGET IMAGE_FILE NAME) ;

System . exit (0);

// obtain the Graphics object to draw on the panel
public Graphics2D getGraphics () {

return this.g2;

// set the background color of the drawing panel
public void setBackground (Color ¢) {

this.panel.setBackground(c);

// show or hide the drawing panel on the screen

public void setVisible (boolean visible) {

36

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

this.frame.setVisible (visible);

// makes the program pause for the given amount of time,
// allowing for animation
public void sleep (int millis) {
try {
Thread . sleep (millis);

} catch (InterruptedException e) {}

// take the current contents of the panel and write them to a file
public void save(String filename) {

String extension = filename.substring (filename.lastIndexOf(”.”) + 1);

// create second image so we get the background color

BufferedImage image2 = new Bufferedlmage (this.width, this.height
BufferedIlmage . TYPEINT RGB);

Graphics g = image2.getGraphics ();

g.setColor (panel.getBackground ());

g.fillRect (0, 0, this.width, this.height);

g.drawlmage (this.image, 0, 0, panel);

// write file
try {

ImagelO . write (image2, extension, new java.io.File(filename));

37

155 } catch (java.io.IlOException e) {

156 System.err.println (” Unable_.to._save_image:\n” + e);

157 }

158 }

159

160 // makes drawing panel become the frontmost window on the screen
161 public void toFront () {

162 this.frame.toFront ();

163 }

164 }

38

