Exposition on Phenotype Spaces: A Topological Model of Evolutionary Proximity

Crista Moreno

January 17, 2017

The construction of a topological space for the secondary structure of RNA molecules.

Outline

- 1. Genotype-Phenotype Relationship
- 2. RNA Shape (Secondary Structure)
- 3. Construction RNA Shape Space
- 4. Construction RNA Phenotype Space (Topological Space)

Genome is the genetic material of an organism or the inherited instructions that are vital to life.

Genome is the genetic material of an organism or the inherited instructions that are vital to life.

Phenotype is the observable characteristics of an organism or the realization of the code written in the genome.

Genome is the genetic material of an organism or the inherited instructions that are vital to life.

Phenotype is the observable characteristics of an organism or the realization of the code written in the genome.

Genotype is the collection of inherited genes responsible for the phenotype of a particular individual or organism.

Genome is the genetic material of an organism or the inherited instructions that are vital to life.

Phenotype is the observable characteristics of an organism or the realization of the code written in the genome.

Genotype is the collection of inherited genes responsible for the phenotype of a particular individual or organism.

Example

The collection of genes responsible for eye color for a particular individual is the genotype and the observable eye coloration is the phenotype.

RNA: genotype sequence, primary structure

Definition

RNA (ribonucleic acid) is a nucleic acid made up of the four nucleotides: guanine (G), cytosine (C), adenine (A), and uracil (U) and is essential to life.

RNA: genotype sequence, primary structure

Definition

RNA (ribonucleic acid) is a nucleic acid made up of the four nucleotides: guanine (G), cytosine (C), adenine (A), and uracil (U) and is essential to life.

Example

GUGAUGGAUU AGGAUGUCCU ACUCCUUUGC UCCGUAAGAU AGUGCGGAGU UCCGAACUUA CACGGCGCGC GGUUAC

Example GUGAUGGAUU AGGAUGUCCU ACUCCUUUGC UCCGUAAGAU AGUGCGGAGU UCCGAACUUA CACGGCGCGC GGUUAC

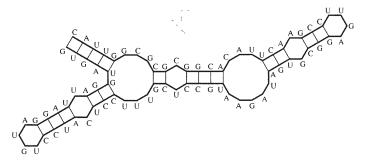


Figure 1 : RNA molecule folded and bonded chain of nucleotides.

RNA Shape Bonding Diagram

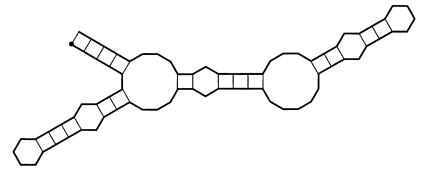


Figure 2 : RNA molecule bonding diagram (secondary structure or shape).

Different nucleotide sequences may generate the same secondary structure or shape.

RNA genotype and phenotype relationship

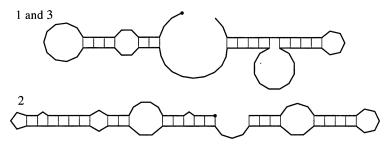


Figure 3 : Different bonding diagrams for different nucleotide sequences.

- 1. GGGCAGUCUC CCGGCGUUUA AGGGAUCCUG AACUUCGUCG CUCCCAUCCA AUCAGUCCGC CUCACGGAUG GAGUUG
- 2. GGGCAGUCUC CCGGCGUUUA AGGAAUCCUG AACUUCGUCG CUCCCAUCCA AUCAGUCCGC CUCACGGAUG GAGUUG
- 3. GGGCAGUCUC CCGGCCUUUA AGGGAUCCUG AACUUCGUCG CUCCCAUCCA AUCAGUCCGC CUCACGGAUG GAGUUG

Definition

A **point mutation** is a mutation from one genotype sequence to another obtained by changing a single entry in the genotype sequence.

Definition

A **point mutation** is a mutation from one genotype sequence to another obtained by changing a single entry in the genotype sequence.

Example

GCCGCGCGCC GCGGCGCGCC Consider all the 10 nucleotide sequences consisting of only guanine and cytosine $% \left({{{\left[{{{C_{{\rm{c}}}}} \right]}_{{\rm{c}}}}} \right)$

Consider all the 10 nucleotide sequences consisting of only guanine and cytosine

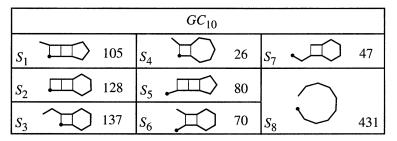


Figure 4 : The eight RNA shapes $\{\sigma_1, \ldots, \sigma_8\}$ that result from $2^{10} = 1024$ possible 10 nucleotide sequences consisting of only guanine (G) and cytosine (C).

The genotype-phenotype relationship is a many-to-one relationship.

Mathematical Model

Folding of the RNA Sequence to its Corresponding Shape

The folding process is modeled as a surjective function

 $\phi:S\to\Sigma$

from the set S of all sequences of fixed length onto the set Σ of all minimum free energy secondary structures corresponding to that length.

Folding of the RNA Sequence to its Corresponding Shape

The folding process is modeled as a surjective function

 $\phi:S\to\Sigma$

from the set S of all sequences of fixed length onto the set Σ of all minimum free energy secondary structures corresponding to that length.

Definition

Let $\alpha, \beta \in \Sigma$, then we say that β is **accessible** from $\alpha, \alpha \mapsto \beta$ if there exists a pair $a, b \in S$ such that a and b differ by a point mutation, and $\phi(a) = \alpha$ and $\phi(b) = \beta$.

Folding of the RNA Sequence to its Corresponding Shape

The folding process is modeled as a surjective function

 $\phi:S\to\Sigma$

from the set S of all sequences of fixed length onto the set Σ of all minimum free energy secondary structures corresponding to that length.

Definition

Let $\alpha, \beta \in \Sigma$, then we say that β is **accessible** from $\alpha, \alpha \mapsto \beta$ if there exists a pair $a, b \in S$ such that a and b differ by a point mutation, and $\phi(a) = \alpha$ and $\phi(b) = \beta$.

Definition

The set of all genotype sequences in S that result in a particular RNA shape $\sigma \in \Sigma$ is called the **neutral network** or neutral set of σ and is denoted $N(\sigma) = \{s | \sigma = \phi(s)\}$.

Construction of Point Mutation Probabilities

Let $\alpha, \beta \in \Sigma$

*m*_{α,β} is the number of point mutations that change a sequence from *N*(α) to *N*(β)

Let $\alpha, \beta \in \Sigma$

- *m*_{α,β} is the number of point mutations that change a sequence from *N*(α) to *N*(β)
- *m*_{β,α} is the number of point mutations that change a sequence from *N*(β) to *N*(α)

Let $\alpha, \beta \in \Sigma$

- *m*_{α,β} is the number of point mutations that change a sequence from *N*(α) to *N*(β)
- *m*_{β,α} is the number of point mutations that change a sequence from *N*(β) to *N*(α)
- Note that $m_{\alpha,\beta} = m_{\beta,\alpha}$

Let $\alpha, \beta \in \Sigma$

- *m*_{α,β} is the number of point mutations that change a sequence from *N*(α) to *N*(β)
- *m*_{β,α} is the number of point mutations that change a sequence from *N*(β) to *N*(α)
- Note that $m_{\alpha,\beta} = m_{\beta,\alpha}$
- *m*_{α,*} is the number of point mutations that change a sequence to a sequence in any other neutral network.

Let $\alpha, \beta \in \Sigma$

- *m*_{α,β} is the number of point mutations that change a sequence from *N*(α) to *N*(β)
- *m*_{β,α} is the number of point mutations that change a sequence from *N*(β) to *N*(α)
- Note that $m_{\alpha,\beta} = m_{\beta,\alpha}$
- *m*_{α,*} is the number of point mutations that change a sequence to a sequence in any other neutral network.

Definition

The mutation probability, $p_{\alpha,\beta}$ is defined by

$$p_{lpha,eta}=rac{m_{lpha,eta}}{m_{lpha,\star}}$$

Notice that $p_{\alpha,\beta}$ may not necessarily be equal to $p_{\beta,\alpha}$ since $m_{\alpha,\star}$ may not equal $m_{\beta,\star}$. Hence, the mutation probability is asymmetric and does not serve as a metric for mutation probabilities.

Definition Metric (Distance Function)

Definition

Let X be a non-empty set. A real-valued function d defined on $X \times X$, i.e. ordered pairs of elements in X, is called a **metric** or **distance function** on X iff it satisfies, for every $a, b, c \in X$ the following axioms:

- (M1) $d(a, b) \ge 0$ and d(a, a) = 0
- (M2) (Symmetry) d(a, b) = d(b, a)
- (M3) (Triangle Inequality) $d(a,c) \leq d(a,b) + d(b,c)$
- (M4) If $a \neq b$, then d(a, b) > 0

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8
σ_1		0.13	0.15	0.08	0.07	0.09	0.04	0.44
σ_2	0.11		0.15	0	0.11	0.18	0.05	0.40
σ_3	0.12	0.15		0.03	0.09	0.06	0.05	0.50
σ_4	0.29	0	0.14		0.07	0.09	0.06	0.35
σ_5	0.08	0.15	0.12	0.02		0.08	0.08	0.47
σ_6	0.12	0.29	0.09	0.03	0.09		0.03	0.35
σ_7	0.08	0.12	0.13	0.03	0.13	0.05		0.46
σ_8	0.18	0.19	0.24	0.04	0.15	0.11	0.09	

Table 1 : Mutation probabilities for the RNA shapes $\sigma_1, \ldots, \sigma_8$.

Construction RNA Shape Space

Algorithm 1 Construction RNA Shape Space

for
$$i = 1, \dots, 8$$
 do
Let $R_i = \{\sigma_i \cup \{\sigma_j | p_{i,j} > 1/7\}\}$
end for

Mutation Probabilities

Table 2 : Construction of $\mathcal{R}_{1/7}$ from Table 1 Mutation probabilities.

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8
σ_1	\checkmark		\checkmark					\checkmark
σ_2		\checkmark	\checkmark			\checkmark		\checkmark
σ_3		\checkmark	\checkmark					\checkmark
σ_4	\checkmark			\checkmark				\checkmark
σ_5		\checkmark			\checkmark			\checkmark
σ_6		\checkmark				\checkmark		\checkmark
σ7							\checkmark	\checkmark
σ_8	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark

 $\begin{aligned} \mathscr{R}_{1/7} &= \{\{\sigma_1, \sigma_3, \sigma_8\}, \{\sigma_2, \sigma_3, \sigma_6, \sigma_8\}, \{\sigma_2, \sigma_3, \sigma_8\}, \{\sigma_1, \sigma_4, \sigma_8\}, \{s_2, s_5, s_8\}, \{\sigma_2, \sigma_6, \sigma_8\}, \{\sigma_7, \sigma_8\}, \{\sigma_1, \sigma_2, \sigma_3, \sigma_5, \sigma_8\}\} \end{aligned}$

Mutation Probabilities

Table 2 : Construction of $\mathcal{R}_{1/7}$ from Table 1 Mutation probabilities.

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8
σ_1	\checkmark		\checkmark					\checkmark
σ_2		\checkmark	\checkmark			\checkmark		\checkmark
σ_3		\checkmark	\checkmark					\checkmark
σ_4	\checkmark			\checkmark				\checkmark
σ_5		\checkmark			\checkmark			\checkmark
σ_6		\checkmark				\checkmark		\checkmark
σ7							\checkmark	\checkmark
σ_8	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark

 $\begin{aligned} \mathscr{R}_{1/7} &= \{\{\sigma_1, \sigma_3, \sigma_8\}, \{\sigma_2, \sigma_3, \sigma_6, \sigma_8\}, \{\sigma_2, \sigma_3, \sigma_8\}, \{\sigma_1, \sigma_4, \\ \sigma_8\}, \{s_2, s_5, s_8\}, \{\sigma_2, \sigma_6, \sigma_8\}, \{\sigma_7, \sigma_8\}, \{\sigma_1, \sigma_2, \sigma_3, \sigma_5, \sigma_8\}\} \\ (\text{Note:} \mathscr{R}_{1/7} &= \{R_i\}_1^8 \text{ is not a topology.}) \end{aligned}$

Definition Topological Space

Definition

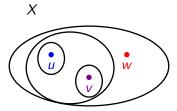
Let X be a nonempty set. A collection \mathcal{T} of subsets of X is a **topology** on X if and only if \mathcal{T} satisfies the following axioms:

- **O1**: \emptyset (empty set) and X are in \mathcal{T} .
- **O2**: The union of the elements of any subcollection of \mathcal{T} is in \mathcal{T} .
- **O3**: The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

The members of \mathcal{T} are then called \mathcal{T} -open sets, or simply open sets. The pair (X, \mathcal{T}) is called a **topological space**.

Example Topological Space

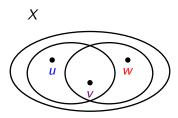
Example $X = \{u, v, w\}, \ \mathcal{T} = \{X, \emptyset, \{u\}, \{v\}, \{u, v\}\}$



Non-Example Topological Space

Example

 $X = \{u, v, w\}, \ T = \{X, \emptyset, \{u, v\}, \{v, w\}\}$ is **NOT** a topology on *X*. Why?



Construction of the minimal basis for the phenotype space of RNA shapes.

Algorithm 2

Extend $\mathscr{R}_{1/7}$ Let $\mathscr{T}_{1/7}$ be the **minimal topology** on GC₁₀ containing $\mathscr{R}_{1/7}$. for σ_i do

take all of the sets R_j that contain σ_i

let B_i be their intersection.

end for

 $\mathscr{B}_{1/7} = \{B_i\}_{i=1}^8$ is the minimal basis for $\mathscr{T}_{1/7}$

Construction of the minimal basis for the phenotype space of RNA shapes.

Algorithm 2

Extend $\mathscr{R}_{1/7}$ Let $\mathscr{T}_{1/7}$ be the **minimal topology** on GC₁₀ containing $\mathscr{R}_{1/7}$. for σ_i do take all of the sets R_j that contain σ_i let B_i be their intersection. end for

$$\mathscr{B}_{1/7} = \{B_i\}_{i=1}^8$$
 is the minimal basis for $\mathscr{T}_{1/7}$

This resulting topological space is referred to as a **phenotype space**.

Definition Basis

Definition

Let X be a set and \mathscr{B} be a collection of subsets of X. We say \mathscr{B} is a **basis** (for a topology on X) if the following statements hold:

(i) For each $x \in X$, there is a $B \in \mathscr{B}$ such that $x \in B$.

(ii) If B_1 and B_2 are in \mathscr{B} and $x \in B_1 \cap B_2$, then there exists B_3 in \mathscr{B} such that $x \in B_3 \subset B_1 \cap B_2$.

Definition Basis

Definition

Let X be a set and \mathscr{B} be a collection of subsets of X. We say \mathscr{B} is a **basis** (for a topology on X) if the following statements hold:

(i) For each $x \in X$, there is a $B \in \mathscr{B}$ such that $x \in B$.

(ii) If B_1 and B_2 are in \mathscr{B} and $x \in B_1 \cap B_2$, then there exists B_3 in \mathscr{B} such that $x \in B_3 \subset B_1 \cap B_2$.

Example

The singleton sets form a basis for the discrete topology. (All subsets of the space are open sets.)

Definition Basis

Definition

Let X be a set and \mathscr{B} be a collection of subsets of X. We say \mathscr{B} is a **basis** (for a topology on X) if the following statements hold:

- (i) For each $x \in X$, there is a $B \in \mathscr{B}$ such that $x \in B$.
- (ii) If B_1 and B_2 are in \mathscr{B} and $x \in B_1 \cap B_2$, then there exists B_3 in \mathscr{B} such that $x \in B_3 \subset B_1 \cap B_2$.

Example

The singleton sets form a basis for the discrete topology. (All subsets of the space are open sets.)

Let \mathscr{B} be a basis on a set X. The **topology** \mathscr{T} **generated by** \mathscr{B} is obtained by defining the open sets to be the empty set and every set that is equal to a union of basis elements.

Basis $\mathscr{B}_{1/7}$ for topology $\mathscr{T}_{1/7}$

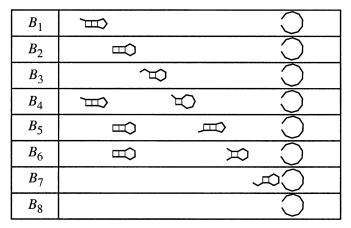


Figure 5 : Basis $\mathscr{B}_{1/7}$ for topology $\mathscr{T}_{1/7}$

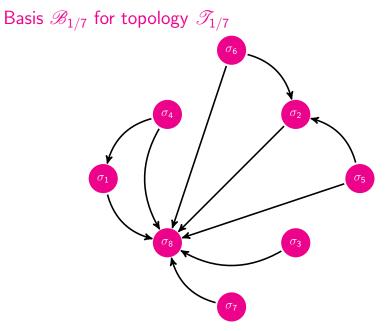


Figure 6 : Basis $\mathcal{B}_{1/7}$ represented by a directed graph.

This gives a formal way of defining continuous and discontinuous evolutionary changes.

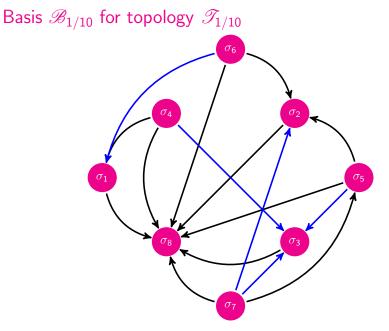


Figure 7 : Basis $\mathscr{B}_{1/10}$ represented by a directed graph.

References

- Fontana, W., and Schuster, P. "Continuity in Evolution: On the Nature of Transitions" Science 280 (1998), 1451-1455.
- 2. Munkres, Topology, 2nd Edition (1999)
- 3. Figures (1 6) Adams, Franzosa, *Introduction to Topology Pure and Applied.* Pearson Prentice Hall Upper Saddle River, 2008.
- W.F. and P.S. Shaping Space: the possible and the attainable in RNA genotype-phenotype mapping. *Journal of Theoretical Biology*, 194(4):491-5515, 1998.

Thank you!

Questions?