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Is this knot the unknot?
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Unknot Theorem

Theorem

Let
P

Q
= [a1, . . . , an] and

R

S
= [b1, . . . , bn] be as in Theorem 5. Then

N

([
P

Q

]
+

[
R

S

])
is unknotted if and only if PS +QR = ±1, that is,

PS and QR are consecutive integers.
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Biological Motivation

Dean, F. B., Stasiak, A., Koller, T. & Cozzarelli, N. R. (1985) J. Biol. Chem. 260, 4975-4983.
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Knots
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How to determine if two knots are
equivalent?
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Knot Diagrams
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How to determine if two knot
diagrams are equivalent?

Crista Moreno Mathematics Department San Francisco State University Hard Unknots & Collapsing Tangles Louis Kauffman and Sofia Lambropoulou



Reidemeister Moves
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Definition Hard Unknot

Definition Hard Unknot
A diagram of the unknot hard if it has the following three properties,
where a move is simplifying if it reduces the crossing number of the
diagram:

I There are no simplifying type I or type II moves on the diagram.

I There are no type III moves on the diagram.
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Example: Ken Millet’s “The Culprit”
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The Culprit Undone
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Definition Recalcitrance

Definition Recalcitrance
Recall that the complexity of a diagram K is the number of crossings,
C(K), of that diagram. Let K be a hard unknot diagram. Let K ′ be a
diagram isotopic to K such that K ′ can be simplified to the unknot. For
any unknotting sequence of Reidemeister moves for K there will be a
diagram K ′max with a maximal number of crossings. Let Top(K)
denote the minimum of C(K ′max) over all unknotting sequences for K.
Let

R(K) =
Top(K)

C(K)
(1)

be called the recalcitrance of the hard unknot diagram K. Very little is
known about R(K).
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Recalcitrance of Culprit

C(K) = 10

Top(K) = 12

R(K) =
Top(K)

C(K)
= 1.2
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Tangles

Definition 2-Tangle

A 2-tangle is a proper embedding of two unoriented arcs and a finite
number of circles in a 3-ball B3, so that the four endpoints lie in the
boundary of B3.
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Tangle Diagrams

Definition Tangle Diagram

A tangle diagram is a regular projection of the tangle on a
cross-sectional disc of B3. By “tangle” we will mean “tangle diagram”.
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Three Types of Tangles: rational, prime, locally knotted.
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Rational Tangles

Definition Rational Tangle

A rational tangle is a special case of a 2-tangle obtained by applying
consecutive twists on neighboring endpoints of two trivial arcs.
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Rational Tangle Crossings
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Operations for tangles (Addition, Multiplication, and
Rotation)

Note that addition and multiplication do not necessarily preserve rational

tangles. Example:
1

[3]
+

1

[3]
. This would produce a prime tangle.
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Closures of rational tangles (Numerator, Denominator)
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Definition Rational Knot

Definition Rational Knot
A rational knot is defined to be the numerator of a rational tangle.
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Represent rational tangles in standard form.

T = [[a1], [a2], . . . , [an]] = [a1] +
1

[a2] +
1

[a3] + . . .
1

[an−1] +
1

[an]

for a1 ∈ Z, a2, . . . , an ∈ Z− 0
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Fractions of Rational Tangles

F (T ) = [a1, a2, . . . , an] := a1 +
1

a2 +
1

a3 + . . .
1

an−1 +
1

an
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Isotopic Tangles

Definition Isotopic

Two tangles, T , S are isotopic, denoted by T S, if and only if they have
identical configurations of their four endpoints, and they differ by a finite
sequence of the Reidemeister moves which take place in the interior of
the projection disc.
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Theorem 1 (Conway 1975)

Theorem
Classification of Rational Tangles Two rational tangles are isotopic if and
only if they have the same fraction.
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Finding the Fraction of a tangle. (Take with a grain of
salt.)

(1) F ([±1]) = ±1
(2) F (T + S) = F (T ) + F (S)

(3) F (T rot) = − 1

F (T )
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Theorem 2 (Schubert 1956)

Theorem

Suppose that rational tangles with fractions
p

q
and

p′

q′
are given. Here p

and q are relatively prime, similarly for p′ and q′. If K

(
p

q

)
and K

(
p′

q′

)
denote the corresponding rational knots obtained by taking numerator

closures of these tangles, then K

(
p

q

)
and K

(
p′

q′

)
are isotopic if and

only if

(1) p = p′ and

(2) either q = q′mod p or qq′ = 1mod p.
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Combinatorial proof of Schubert’s Theorem

Given a rational knot diagram at
which places may one cut so that it
opens to a rational tangle?

Crista Moreno Mathematics Department San Francisco State University Hard Unknots & Collapsing Tangles Louis Kauffman and Sofia Lambropoulou



Special Cut
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Palindrome Cut
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Theorem 3: The Palindrome Theorem

Theorem

Let {a1, a2, . . . , an} be a collection of n integers, and let

P

Q
= [a1, a2, . . . , an] and

P ′

Q′
= [an, an−1, . . . , a1]

Then P = P ′ and QQ′ ≡ (−1)n+1mod P Moreover, for any sequence of
integers {a1, a2, . . . , an} the value of the corresponding continued

fraction
P

Q
= [a1, a2, . . . , an] is given through the following matrix

product
M = M(a1)M(a2) . . .M(an)

via the identity

M =

(
P Q′

Q U

)
where this matrix also gives the evaluation of the palindrome continued
fraction
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Theorem 3: The Palindrome Theorem Proof Base Case

Proof

Let {a1, a2, . . . , an} be a collection of integers.

Base Case : Let
K

J
= [a1] and

K ′

J ′
= [a1].

Hence

K

J
=

a1
1

=
K ′

J ′

=⇒ K = K ′

and M(a1) =

(
a1 1
1 0

)
= MT (a1)

M(a1) =

(
K J ′

J H

)
where JJ ′ ≡ (−1)n+1mod K since (1)(1) ≡ (−1)2mod a1
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Theorem 3: The Palindrome Theorem Proof Inductive Step

Proof Continued

Inductive Step : Let
R

S
= [a2, . . . , an] and

R′

S′
= [an, an−1, . . . , a2]. By

induction we can say that N1 = M(a2)M(a3) . . .M(an) =

(
R S′

S V

)
Note that

M = M(a1)N1

=

(
a1 1
1 0

)
M(a2)M(a3) . . .M(an)

=

(
a1 1
1 0

)(
R S′

S V

)
=

(
a1R+ S a1S

′ + V

R S′

)
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Theorem 3: The Palindrome Theorem Proof Continued 1

Proof Continued
Since

P

Q
= a1 +

1
R

S

= a1 +
S

R

=
a1R+ S

R

we have that P = a1R+ S and Q = R
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Theorem 3: The Palindrome Theorem Proof Continued 2

...

Now I want to show that Q′ = a1S
′ + V .

Let
L

W
= [an−1, . . . , a2, a1] and

L′

W ′
= [a1, a2, . . . , an−1].

N2 = M(an−1)M(an−2) . . .M(a1) =

(
L W ′

W Z

)
MT = M(an)M(an−1) . . .M(a1)

= M(an)N2

=

(
an 1
1 0

)(
L W ′

W Z

)
=

(
anL+W anW

′ + Z
L W ′

)

Since
P ′

Q′
= an +

1
L

W

= an +
W

L
=

anL+W

L
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Theorem 3: The Palindrome Theorem Proof Continued 3

...

M =

(
a1R+ S a1S

′ + V

R S′

)

MT =

(
anL+W anW

′ + Z

L W ′

)

Since
P ′

Q′
= an +

1
L

W

= an +
W

L
=

anL+W

L
.

Hence Q′ = L = a1S
′ + V and M =

(
P Q′

Q U

)
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Theorem 3: The Palindrome Theorem Proof Continued 4

Proof.

But I also want to show that QQ′ ≡ (−1)n+1mod P .

PU −QQ′ = Det(M)

= Det(M(a1))Det(M(a2)) · · ·Det(M(an))

= (−1)(−1) · · · (−1)︸ ︷︷ ︸
n

= (−1)n
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Theorem 4

Theorem

Let
P

Q
= [a1, a2, . . . , an] and

R

S
= [b1, b2, . . . , bm].

Let A =

[
P

Q

]
and B =

[
R

S

]
be the corresponding rational tangles.

Then the knot or link N(A+B) is rational. In fact

N(A+B) = N([an, an−1, . . . , a1 + b1, b2, . . . , bm])
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Theorem 4
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Definition

Definition

Given continued fractions
P

Q
= [a1, . . . , an] and

R

S
= [b1, . . . , bm], let

[a1, . . . , an]#[b1, . . . , bm] := [an, . . . , a2, a1 + b1, b2, . . . , bm].
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Theorem 5

Theorem

If
P

Q
has a matrix M = M(~a) = M(a1) . . . ,M(an) and

R

S
has a matrix

N = M(~b) = M(b1), . . . ,M(bm), then [a1, . . . , an]#[b1, . . . , bm] has
matrix

M#N := MTNE

where NE denotes the matrix obtained by interchanging the rows of N .
This gives an explicit formula for [a1, . . . , an]#[b1, . . . , bm]. This formula

can be used to determine not only when N

([
P

Q

]
+

[
R

S

])
is unknotted

but also to find its knot type as a rational knot via Schubert’s Theorem.
In particular, we find that

N

([
P

Q

]
+

[
R

S

])
= N

([
PS +QR

Q′S + UR

])
= N

([
Num(P/Q+R/S)

Num(Q′/U +R/S)

])
where |PU −QQ′| = 1
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WHITE BOARD
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Theorem 5 Proof 1

Proof

Let M(~a) = M(a1) . . .M(an) and M(~b) = M(b1) . . .M(bm).
By Theorem 3

M(~a) =

(
P Q′

Q U

)
M(~b) =

(
R S′

S V

)

Let
F

G
= [an, an−1, . . . , a1 + b1, b2, . . . , bm] =

P

Q
#

R

S
.

Then by Theorem 4 we have

N

([
P

Q

]
+

[
R

S

])
= N

([
F

G

])
and

M(~c) = M(an)M(an−1) . . .M(a1 + b1)M(b2) . . .M(bm)
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Theorem 5 Proof Continued 2

Proof Continued
Note the identity(

a1 1
1 0

)(
0 1
1 0

)(
b1 1
1 0

)
=

(
1 a1
0 1

)(
b1 1
1 0

)
=

(
a1 + b1 1

1 0

)
Thus

M(~c) = M(~a)T
(
0 1
1 0

)
M(~b) = M(~a)TM(~b)E

Where ME denotes the matrix obtained from M by interchanging its two
rows. In particular, this formula implies that(

F G′

G W

)
=

(
P Q
Q′ U

)(
S V
R S′

)
=

(
PS +QR PV +QS′

Q′S + UR Q′V + US′

)
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Theorem 5 Proof Continued 3

Proof.
Thus

N ([P/Q] + [R/S]) = N

([
PS +QR

Q′S + UR

])
= N

([
Num(P/Q+R/S)

Num(Q′/U +R/S)

])
where|PU −QQ′| = 1.
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Theorem 5 Example: Sum of two Rational Tangles
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Theorem 5 Example: Numerator of the sum
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Theorem 5 Example

Let ~a = [0, 3] and ~b = [0, 3].

M(~a) = M(0)M(3) =

(
0 1
1 0

)(
3 1
1 0

)
=

(
1 0
3 1

)
=

(
P Q′

Q U

)

M(~b) = M(0)M(3) =

(
0 1
1 0

)(
3 1
1 0

)
=

(
1 0
3 1

)
=

(
R S′

S V

)
Let

F

G
=

P

Q
#

R

S

N

([
P

Q

]
+

[
R

S

])
= N

([
P

Q
#

R

S

])
= N

([
(P )(S) + (Q)(R)

(Q′)(S) + (U)(R)

])
= N

([
F

G

])

N

(
1

[3]
+

1

[3]

)
= N

([
1

3
#

1

3

])
= N

([
(1)(3) + (3)(1)

(0)(3) + (1)(1)

])
= N([6])
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Unknot Theorem

Theorem

Let
P

Q
= [a1, . . . , an] and

R

S
= [b1, . . . , bn] be as in Theorem 5. Then

N

([
P

Q

]
+

[
R

S

])
is unknotted if and only if PS +QR = ±1, that is,

PS and QR are consecutive integers.
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Project Idea for Xer Recombination

K1 = N(R1 +R2)

= N([−2] + [1])

= N

([
−2
1

]
+

[
1

1

])
unknotted

= N

([
−2
1

#
1

1

])
= N([−1])

K2 = N(R1 +R3)

= N([−2] + [0])

= N

([
−2
1

]
+

[
0

1

])
hopf link

= N

([
−2
1

#
0

1

])
= N([−2])

R2R1

R3R1

K1 =

K2 =
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