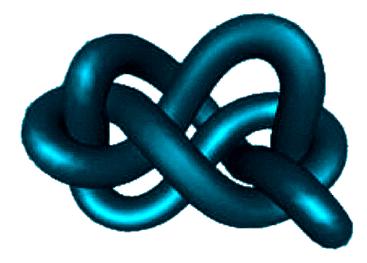
Hard Unknots & Collapsing Tangles Louis Kauffman and Sofia Lambropoulou

Crista Moreno Mathematics Department San Francisco State University

March 15, 2013

Crista Moreno Mathematics Department San Francisco State University Ha

Is this knot the unknot?

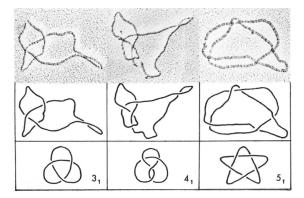


Crista Moreno Mathematics Department San Francisco State University

Theorem

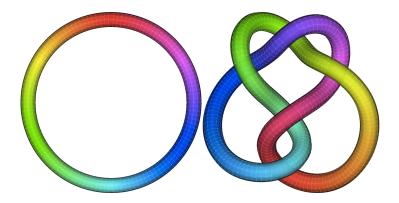
Let $\frac{P}{Q} = [a_1, \dots, a_n]$ and $\frac{R}{S} = [b_1, \dots, b_n]$ be as in Theorem 5. Then $N\left(\left[\frac{P}{Q}\right] + \left[\frac{R}{S}\right]\right)$ is unknotted if and only if $PS + QR = \pm 1$, that is, PS and QR are consecutive integers.

Biological Motivation



Dean, F. B., Stasiak, A., Koller, T. & Cozzarelli, N. R. (1985) J. Biol. Chem. 260, 4975-4983.

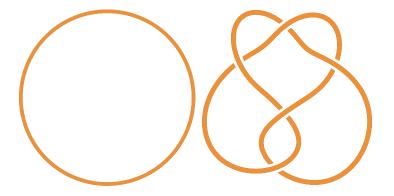
Crista Moreno Mathematics Department San Francisco State University



Crista Moreno Mathematics Department San Francisco State University

How to determine if two knots are equivalent?

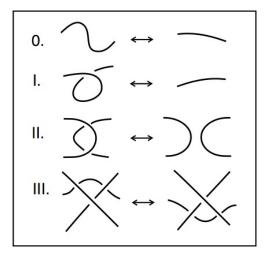
Knot Diagrams



Crista Moreno Mathematics Department San Francisco State University

How to determine if two knot diagrams are equivalent?

Reidemeister Moves



Crista Moreno Mathematics Department San Francisco State University

Definition Hard Unknot

A diagram of the unknot **hard** if it has the following three properties, where a move is simplifying if it reduces the crossing number of the diagram:

- There are no simplifying type I or type II moves on the diagram.
- There are no type III moves on the diagram.

Definition Hard Unknot

A diagram of the unknot **hard** if it has the following three properties, where a move is simplifying if it reduces the crossing number of the diagram:

- ► There are no simplifying type I or type II moves on the diagram.
- There are no type III moves on the diagram.

Definition Hard Unknot

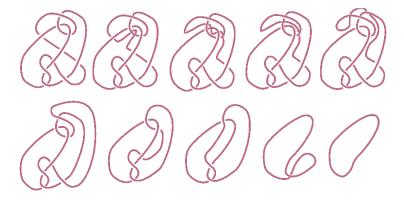
A diagram of the unknot **hard** if it has the following three properties, where a move is simplifying if it reduces the crossing number of the diagram:

- ► There are no simplifying type I or type II moves on the diagram.
- There are no type III moves on the diagram.

Example: Ken Millet's "The Culprit"

Crista Moreno Mathematics Department San Francisco State University

The Culprit Undone



Crista Moreno Mathematics Department San Francisco State University

Definition Recalcitrance

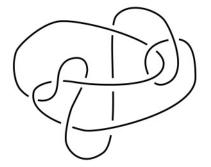
Recall that the complexity of a diagram K is the number of crossings, C(K), of that diagram. Let K be a hard unknot diagram. Let K' be a diagram isotopic to K such that K' can be simplified to the unknot. For any unknotting sequence of Reidemeister moves for K there will be a diagram K'max with a maximal number of crossings. Let Top(K) denote the minimum of C(K'max) over all unknotting sequences for K. Let

$$R(K) = \frac{Top(K)}{C(K)} \tag{1}$$

be called the **recalcitrance** of the hard unknot diagram K. Very little is known about R(K).

Crista Moreno Mathematics Department San Francisco State University

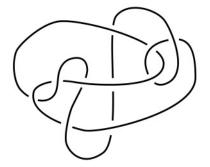
Recalcitrance of Culprit



C(K) = 10 Top(K) = 12 $R(K) = \frac{Top(K)}{C(K)} = 1.2$

Crista Moreno Mathematics Department San Francisco State University

Recalcitrance of Culprit



$$C(K) = 10$$

$$Top(K) = 12$$

$$R(K) = \frac{Top(K)}{C(K)} = 1.2$$

Crista Moreno Mathematics Department San Francisco State University

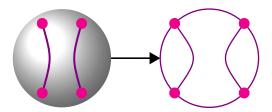
Definition 2-Tangle

A **2-tangle** is a proper embedding of two unoriented arcs and a finite number of circles in a 3-ball B^3 , so that the four endpoints lie in the boundary of B^3 .

Crista Moreno Mathematics Department San Francisco State University

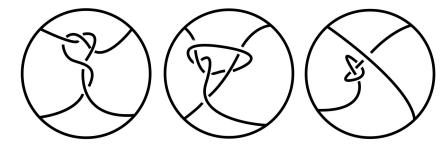
Definition Tangle Diagram

A **tangle diagram** is a regular projection of the tangle on a cross-sectional disc of B^3 . By "tangle" we will mean "tangle diagram".



Crista Moreno Mathematics Department San Francisco State University

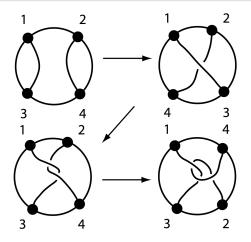
Three Types of Tangles: rational, prime, locally knotted.



Crista Moreno Mathematics Department San Francisco State University

Definition Rational Tangle

A **rational tangle** is a special case of a 2-tangle obtained by applying consecutive twists on neighboring endpoints of two trivial arcs.



Crista Moreno Mathematics Department San Francisco State University

Hard Unknots & Collapsing Tangles Louis Kauffman and Sofia Lambropoulou

Rational Tangle Crossings

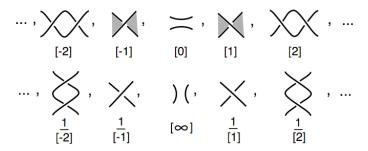


Figure 8 - The Elementary Rational Tangles and the Types of Crossings

Operations for tangles (Addition, Multiplication, and Rotation)

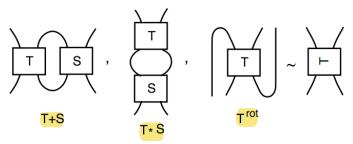


Figure 9 - Addition, Multiplication and Rotation of 2-Tangles

Note that addition and multiplication do not necessarily preserve rational tangles. Example: $\frac{1}{[3]} + \frac{1}{[3]}$. This would produce a prime tangle.

Crista Moreno Mathematics Department San Francisco State University

Closures of rational tangles (Numerator, Denominator)

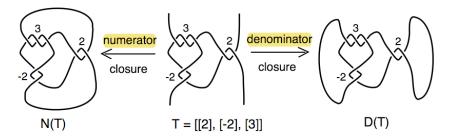


Figure 7 - A Rational Tangle and its Closures to Rational Knots

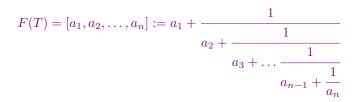
Definition Rational Knot

A rational knot is defined to be the numerator of a rational tangle.

Represent rational tangles in standard form.

$$T = [[a_1], [a_2], \dots, [a_n]] = [a_1] + \frac{1}{[a_2] + \frac{1}{[a_3] + \dots + \frac{1}{[a_{n-1}] + \frac{1}{[a_n]}}}}$$

for $a_1 \in \mathbb{Z}, a_2, \ldots, a_n \in \mathbb{Z} - 0$



Definition Isotopic

Two tangles, T, S are **isotopic**, denoted by T S, if and only if they have identical configurations of their four endpoints, and they differ by a finite sequence of the Reidemeister moves which take place in the interior of the projection disc.

Theorem

Classification of Rational Tangles Two rational tangles are isotopic if and only if they have the same fraction.

Finding the Fraction of a tangle. (Take with a grain of salt.)

(1)
$$F([\pm 1]) = \pm 1$$

(2) $F(T+S) = F(T) + F(S)$
(3) $F(T^{\text{rot}}) = -\frac{1}{F(T)}$

Theorem

Suppose that rational tangles with fractions $\frac{p}{q}$ and $\frac{p'}{q'}$ are given. Here p and q are relatively prime, similarly for p' and q'. If $K\left(\frac{p}{q}\right)$ and $K\left(\frac{p'}{q'}\right)$ denote the corresponding rational knots obtained by taking numerator closures of these tangles, then $K\left(\frac{p}{q}\right)$ and $K\left(\frac{p'}{q'}\right)$ are isotopic if and only if (1) p = p' and (2) either $q = q' \mod p$ or $qq' = 1 \mod p$.

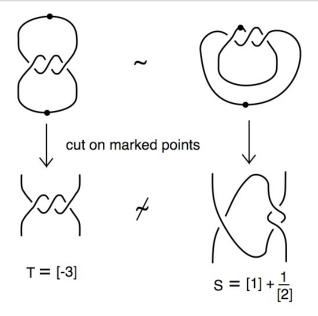
Crista Moreno Mathematics Department San Francisco State University

Combinatorial proof of Schubert's Theorem

Given a rational knot diagram at which places may one cut so that it opens to a rational tangle?

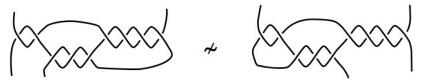
Crista Moreno Mathematics Department San Francisco State University

Special Cut



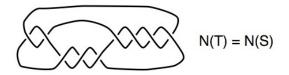
Crista Moreno Mathematics Department San Francisco State University

Palindrome Cut



T = [2] + 1/([3] + 1/[4])

S = [4] + 1/([3] + 1/[2])



Crista Moreno Mathematics Department San Francisco State University

Theorem 3: The Palindrome Theorem

Theorem

Let $\{a_1, a_2, \ldots, a_n\}$ be a collection of n integers, and let

$$rac{P}{Q} = [a_1, a_2, \dots, a_n]$$
 and $rac{P'}{Q'} = [a_n, a_{n-1}, \dots, a_1]$

Then P = P' and $QQ' \equiv (-1)^{n+1} \mod P$ Moreover, for any sequence of integers $\{a_1, a_2, \ldots, a_n\}$ the value of the corresponding continued fraction $\frac{P}{Q} = [a_1, a_2, \ldots, a_n]$ is given through the following matrix product

$$M = M(a_1)M(a_2)\dots M(a_n)$$

via the identity

$$M = \begin{pmatrix} P & Q' \\ Q & U \end{pmatrix}$$

where this matrix also gives the evaluation of the palindrome continued fraction

Crista Moreno Mathematics Department San Francisco State University

Theorem 3: The Palindrome Theorem Proof Base Case

Proof

Let $\{a_1, a_2, \ldots, a_n\}$ be a collection of integers. Base Case : Let $\frac{K}{J} = [a_1]$ and $\frac{K'}{J'} = [a_1]$. Hence

$$\frac{K}{J} = \frac{a_1}{1} = \frac{K'}{J'}$$
$$\implies K = K'$$

and
$$M(a_1) = \begin{pmatrix} a_1 & 1\\ 1 & 0 \end{pmatrix} = M^T(a_1)$$

 $M(a_1) = \begin{pmatrix} K & J'\\ J & H \end{pmatrix}$
where $JJ' \equiv (-1)^{n+1} \mod K$ since $(1)(1) \equiv (-1)^2 \mod a_1$

Crista Moreno Mathematics Department San Francisco State University

Theorem 3: The Palindrome Theorem Proof Inductive Step

Proof Continued

Inductive Step: Let
$$\frac{R}{S} = [a_2, \ldots, a_n]$$
 and $\frac{R'}{S'} = [a_n, a_{n-1}, \ldots, a_2]$. By induction we can say that $N_1 = M(a_2)M(a_3)\ldots M(a_n) = \begin{pmatrix} R & S' \\ S & V \end{pmatrix}$
Note that

$$M = M(a_1)N_1$$

$$= \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} M(a_2)M(a_3)\dots M(a_n)$$

$$= \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} R & S' \\ S & V \end{pmatrix}$$

$$= \begin{pmatrix} \boxed{a_1R+S} & \boxed{a_1S'+V} \\ \boxed{R} & S' \end{pmatrix}$$

Crista Moreno Mathematics Department San Francisco State University

Proof Continued

Since

$$\frac{P}{Q} = a_1 + \frac{1}{\frac{R}{S}}$$
$$= a_1 + \frac{S}{\frac{R}{R}}$$
$$= \frac{a_1R + S}{R}$$
we have that $P = a_1R + S$ and $Q = R$

Crista Moreno Mathematics Department San Francisco State University

Now I want to show that
$$Q' = a_1 S' + V$$
.
Let $\frac{L}{W} = [a_{n-1}, \dots, a_2, a_1]$ and $\frac{L'}{W'} = [a_1, a_2, \dots, a_{n-1}]$.
 $N_2 = M(a_{n-1})M(a_{n-2})\dots M(a_1) = \begin{pmatrix} L & W' \\ W & Z \end{pmatrix}$
 $M^T = M(a_n)M(a_{n-1})\dots M(a_1)$
 $= M(a_n)N_2$
 $= \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} L & W' \\ W & Z \end{pmatrix}$
 $= \begin{pmatrix} a_n L + W & a_n W' + Z \\ L & W' \end{pmatrix}$
Since $\frac{P'}{Q'} = a_n + \frac{1}{\frac{L}{W}} = a_n + \frac{W}{L} = \frac{a_n L + W}{L}$

Crista Moreno Mathematics Department San Francisco State University

....

$$M = \begin{pmatrix} a_1R + S & \boxed{a_1S' + V} \\ R & S' \end{pmatrix}$$
$$M^T = \begin{pmatrix} a_nL + W & a_nW' + Z \\ \boxed{L} & W' \end{pmatrix}$$
Since
$$\frac{P'}{Q'} = a_n + \frac{1}{\frac{L}{W}} = a_n + \frac{W}{L} = \frac{a_nL + W}{L}.$$
Hence
$$\boxed{Q' = L = a_1S' + V} \text{ and } M = \begin{pmatrix} P & Q' \\ Q & U \end{pmatrix}$$

Crista Moreno Mathematics Department San Francisco State University

Proof.

But I also want to show that $QQ' \equiv (-1)^{n+1} \mod P$.

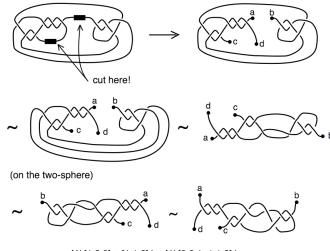
$$PU - QQ' = \operatorname{Det}(M)$$

= $\operatorname{Det}(M(a_1))\operatorname{Det}(M(a_2))\cdots\operatorname{Det}(M(a_n))$
= $\underbrace{(-1)(-1)\cdots(-1)}_n$
= $(-1)^n$

Crista Moreno Mathematics Department San Francisco State University

Let
$$\frac{P}{Q} = [a_1, a_2, \dots, a_n]$$
 and $\frac{R}{S} = [b_1, b_2, \dots, b_m]$.
Let $A = \begin{bmatrix} \frac{P}{Q} \end{bmatrix}$ and $B = \begin{bmatrix} \frac{R}{S} \end{bmatrix}$ be the corresponding rational tangles.
Then the knot or link $N(A + B)$ is rational. In fact
 $N(A + B) = N([a_n, a_{n-1}, \dots, a_1 + b_1, b_2, \dots, b_m])$

Crista Moreno Mathematics Department San Francisco State University Hard Unknots a



N([1,2,3] + [1,1,2]) = N([3,2,1+1,1,2])

Figure 17 - The Numerator of a Sum of Rational Tangles is a Rational Link

Crista Moreno Mathematics Department San Francisco State University

Definition Given continued fractions $\frac{P}{Q} = [a_1, \dots, a_n]$ and $\frac{R}{S} = [b_1, \dots, b_m]$, let $[a_1, \dots, a_n] \# [b_1, \dots, b_m] := [a_n, \dots, a_2, a_1 + b_1, b_2, \dots, b_m].$

Crista Moreno Mathematics Department San Francisco State University Hard Unknots & Collapsing Tangles Louis Kauffman and Sofia Lambropoulou

If $\frac{P}{Q}$ has a matrix $M = M(\vec{a}) = M(a_1) \dots, M(a_n)$ and $\frac{R}{S}$ has a matrix $N = M(\vec{b}) = M(b_1), \dots, M(b_m)$, then $[a_1, \dots, a_n] \# [b_1, \dots, b_m]$ has matrix

$$M \# N := M^T N^E$$

where N^E denotes the matrix obtained by interchanging the rows of N. This gives an explicit formula for $[a_1, \ldots, a_n] \# [b_1, \ldots, b_m]$. This formula can be used to determine not only when $N\left(\left[\frac{P}{Q}\right] + \left[\frac{R}{S}\right]\right)$ is unknotted but also to find its knot type as a rational knot via Schubert's Theorem. In particular, we find that

$$N\left(\left[\frac{P}{Q}\right] + \left[\frac{R}{S}\right]\right) = N\left(\left[\frac{PS + QR}{Q'S + UR}\right]\right) = N\left(\left[\frac{Num(P/Q + R/S)}{Num(Q'/U + R/S)}\right]\right)$$

where |PU - QQ'| = 1

Crista Moreno Mathematics Department San Francisco State University

WHITE BOARD

Crista Moreno Mathematics Department San Francisco State University Hard Unknots & Collapsing Tangles Louis Kauffman and Sofia Lambropoulou

Theorem 5 Proof 1

Proof

Let $M(\vec{a}) = M(a_1) \dots M(a_n)$ and $M(\vec{b}) = M(b_1) \dots M(b_m)$. By Theorem 3

$$M(\vec{a}) = \begin{pmatrix} P & Q' \\ Q & U \end{pmatrix}$$
$$M(\vec{b}) = \begin{pmatrix} R & S' \\ S & V \end{pmatrix}$$

Let
$$\frac{F}{G} = [a_n, a_{n-1}, \dots, a_1 + b_1, b_2, \dots, b_m] = \frac{P}{Q} \# \frac{R}{S}$$
.
Then by Theorem 4 we have

$$N\left(\left[\frac{P}{Q}\right] + \left[\frac{R}{S}\right]\right) = N\left(\left[\frac{F}{G}\right]\right)$$

and

$$M(\vec{c}) = M(a_n)M(a_{n-1})\dots M(a_1+b_1)M(b_2)\dots M(b_m)$$

Crista Moreno Mathematics Department San Francisco State University

Proof Continued

Note the identity

$$\begin{pmatrix} a_1 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} b_1 & 1\\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & a_1\\ 0 & 1 \end{pmatrix} \begin{pmatrix} b_1 & 1\\ 1 & 0 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 & 1\\ 1 & 0 \end{pmatrix}$$

Thus

$$M(\vec{c}) = M(\vec{a})^T \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} M(\vec{b}) = M(\vec{a})^T M(\vec{b})^E$$

Where M^E denotes the matrix obtained from M by interchanging its two rows. In particular, this formula implies that

$$\begin{pmatrix} F & G' \\ G & W \end{pmatrix} = \begin{pmatrix} P & Q \\ Q' & U \end{pmatrix} \begin{pmatrix} S & V \\ R & S' \end{pmatrix} = \begin{pmatrix} PS + QR & PV + QS' \\ Q'S + UR & Q'V + US' \end{pmatrix}$$

Crista Moreno Mathematics Department San Francisco State University

Proof.

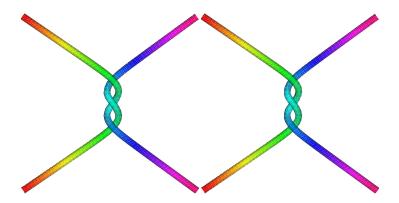
Thus

$$N\left(\left[P/Q\right] + \left[R/S\right]\right) = N\left(\left[\frac{PS + QR}{Q'S + UR}\right]\right) = N\left(\left[\frac{Num(P/Q + R/S)}{Num(Q'/U + R/S)}\right]\right)$$

where $|PU - QQ'| = 1$.

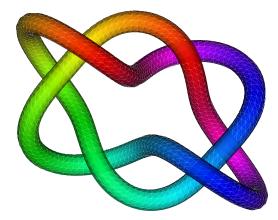
Crista Moreno Mathematics Department San Francisco State University Hard Unknots & Collapsing Tangle

Theorem 5 Example: Sum of two Rational Tangles



Crista Moreno Mathematics Department San Francisco State University

Theorem 5 Example: Numerator of the sum



Crista Moreno Mathematics Department San Francisco State University

Theorem 5 Example

Let
$$\vec{a} = [0,3]$$
 and $\vec{b} = [0,3]$.

$$M(\vec{a}) = M(0)M(3) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} P & Q' \\ Q & U \end{pmatrix}$$

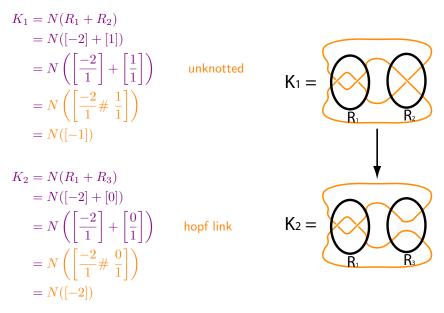
$$M(\vec{b}) = M(0)M(3) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} R & S' \\ S & V \end{pmatrix}$$
Let $\frac{F}{G} = \frac{P}{Q} \# \frac{R}{S}$

$$N\left(\left[\frac{P}{Q}\right] + \left[\frac{R}{S}\right]\right) = N\left(\left[\frac{P}{Q} \# \frac{R}{S}\right]\right) = N\left(\left[\frac{(P)(S) + (Q)(R)}{(Q')(S) + (U)(R)}\right]\right) = N\left(\left[\frac{F}{G}\right] + \frac{1}{[3]}\right) = N\left(\left[\frac{1}{3} \# \frac{1}{3}\right]\right) = N\left(\left[\frac{(1)(3) + (3)(1)}{(0)(3) + (1)(1)}\right]\right) = N([6])$$

Crista Moreno Mathematics Department San Francisco State University

Let $\frac{P}{Q} = [a_1, \dots, a_n]$ and $\frac{R}{S} = [b_1, \dots, b_n]$ be as in Theorem 5. Then $N\left(\left[\frac{P}{Q}\right] + \left[\frac{R}{S}\right]\right)$ is unknotted if and only if $PS + QR = \pm 1$, that is, PS and QR are consecutive integers.

Project Idea for Xer Recombination



Crista Moreno Mathematics Department San Francisco State University